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Abstract

Data serves as the foundation for how deep learning models perceive and predict
reality by encapsulating real-world complexities. This dissertation investigates
methods for optimizing data to enhance the learning effectiveness and inference
efficiency of deep learning systems. Departing from conventional paradigms re-
liant on fixed-size benchmark datasets, our study introduces novel frameworks
capable of generating, cleaning, and processing infinitely large amounts of data.
Central to this research is the development of frameworks for co-optimizing data
and models, enabling trained models to iteratively and autonomously enhance
data processing in a self-reinforcing manner. Empirical evaluations across mul-
tiple domains—including visual image recognition, natural language process-
ing, and speech processing—demonstrate the robustness and versatility of the
proposed framework. The outcomes highlight significant improvements in learn-
ing performance and inference efficiency, underscoring the broad applicability
and transformative potential of these techniques across industrial and scientific

fields.

Keywords: Deep Learning, Image Recognition, Natural Language Processing,
Synthetic Data Generation, Long-Term Memory, Efficient Inference System
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Chapter 1

Introduction

Deep learning has dramatically transformed computational capabilities, en-
abling breakthroughs across diverse fields, including computer vision, natural
language processing, and speech recognition [142, 235|. Landmark models such
as ResNet and GPT [60, 16], trained on extensive curated datasets, illustrate
these remarkable advancements, consistently achieving unprecedented perfor-
mance benchmarks and surpassing human-level accuracy in many tasks.

Despite this remarkable progress, recent advancements have encountered
significant challenges. Primarily, deep learning models have now consumed
virtually available high-quality data from the internet for training purposes
[142]. As a result, the gains derived from purely scaling datasets have begun to
plateau, underscoring the diminishing returns of current methodologies. Con-
currently, new opportunities have emerged, particularly in enabling models to
dynamically adapt through interactions and effectively learn within specialized,
data-limited regimes, leveraging foundational models [15]. These evolving ap-
plication scenarios, including real-time interactive Al systems and highly spe-
cialized industry domains, introduce unique challenges that traditional deep
learning paradigms are poorly equipped to address.

In this dissertation, we systematically address these critical challenges by



explicitly considering the pivotal role of data within deep learning frameworks.
Specifically, we tackle two pressing data-centric challenges: effective model learn-
ing under scenarios with limited labeled data, and efficient processing and uti-
lization of infinite data streams. To overcome these challenges, we propose in-
novative data optimization methodologies explicitly designed to enhance both
the efficiency and adaptability of deep learning systems.

A central component of our contributions is a synthetic data generation
framework explicitly designed to produce informative, high-quality training
samples, thereby mitigating the dependency on large-scale labeled datasets
[91, 92]. Complementing this, we introduce a comprehensive large-scale data
cleaning framework capable of identifying, correcting, and removing label er-
rors and outliers, thus ensuring the integrity and reliability of training data
[94]. Furthermore, we develop advanced data compression methods specifically
optimized for Transformer-based architectures, significantly improving their ef-
ficiency in managing online interactions and memory usage, critical for deploy-
ment in interactive, real-world settings [93, 97].

Collectively, these contributions constitute a joint optimization framework,
where improvements to the data directly facilitate enhanced model perfor-
mance, which in turn yields refined data optimization strategies. This iterative,
self-reinforcing cycle promotes continuous improvement, enabling deep learn-
ing models to effectively leverage both limited labeled datasets and infinitely
abundant data streams for robust training and inference.

The methodologies developed and empirically validated throughout our re-
search provide substantial practical utility while simultaneously offering mean-
ingful theoretical insights. By proposing principled extensions to conventional
deep learning frameworks, our work lays a robust foundation for future research
directions, particularly in adaptive, efficient, and scalable deep learning sys-
tems. In the subsequent sections of this dissertation, we detail our key research
contributions comprehensively and outline promising trajectories for future ex-

ploration inspired by these foundational advancements.



1.1 Thesis Organization

This thesis systematically addresses critical data-centric challenges within deep
learning frameworks by presenting a series of structured research contributions.
Following this introductory chapter, Chapter 2 outlines essential background
and foundational concepts necessary for understanding subsequent chapters.

In Chapters 3 and 4, we first explore synthetic data generation techniques
specifically developed for effective training under limited data scenarios. In
Chapter 3, we introduce Puzzle Mix, an innovative data augmentation technique
that strategically exploits image saliency and local statistics to achieve optimal
performance in mixup-based learning methods [91]. Building upon this, Chap-
ter 4 presents Co-Mizup, a saliency-guided joint mixup approach enhanced by
supermodular diversity, further improving generalization by introducing struc-
tured diversity into the training data [92].

Effective training not only relies on high-quality synthetic data but also
demands robust strategies to ensure data integrity. Chapter 5 introduces the
Neural Relation Graph, a unified and robust framework that systematically
detects and corrects label noise while identifying outlier data points, ensuring
reliable and high-quality training datasets [94].

To handle scenarios involving infinite data streams, data compression meth-
ods become crucial for efficient training and inference. In Chapters 6 to 8, we
discuss novel compression methodologies. Chapter 6 details Dataset Conden-
sation, a highly efficient synthetic-data parameterization technique designed
to generate concise yet highly informative datasets [93]. Complementing this,
Chapter 7 explores Compressed Context Memory, an advanced compression
method tailored for Transformer-based models, significantly enhancing memory
efficiency and enabling real-time interactions [97|. Chapter 8 presents K Vzip,
a training-free compression algorithm for reducing the key-value cache size of
Transformer models [98].

Finally, we summarize our contributions, discuss broader implications, and

outline promising directions for future research in Chapter 9.



Chapter 2

Preliminary

In this section, we provide a formal description of the data optimization frame-
work proposed in this dissertation.

We start by defining the classical supervised learning scenario. Given a
training dataset Di;ain and a parameterized neural network fy, we optimize the

model parameters 8* by minimizing a loss function ¢ as
6" = argéninﬁ(fg, Dtrain)-
Then, the trained model performs inference on new data zy as fp(xt). In
contrast to the traditional framework, we propose a novel approach that jointly
optimizes data with the model. Specifically, we introduce a function g that

generates new data from the existing training set using information derived

from the model fy. The joint optimization process is defined as

0" = argmin £( fg, Dsyn(0)) where Dsyn () = g(Dtrain, fo)-
0

We propose data augmentation techniques Puzzle Mix and Co-Mixup, based



on this joint optimization framework [91, 92|. These methods leverage saliency
information extracted by the model fy to produce enhanced training data
through function g. Additionally, we develop a data refinement algorithm ¢ that
constructs a relationship graph among training data points using the model fy
to detect and remove label errors and outliers [94].

We also introduces a dataset condensation framework designed to compress
the training dataset, enabling effective model training with significantly reduced

storage [93]. This optimization satisfies the following condition:

|Dsyn(9)’ = |9(Dtrain7f0)| < |Dtrain|-

Finally, we propose an inference framework tailored for online scenarios,
efficiently handling sequential incoming data by compressing information into
contextual memory [97]. We introduce a function g that recurrently updates
memory states based on the previous memory state, the current input x;, and

the trained model fy+ as

output = fg«(z; | Memy), where Mem; = g(Memy_1, x, fo«).

Here, the initial memory state Memy is initialized as an empty state. Through
this framework, inference on x; leverages long-term memory states Mem;, con-
tinuously updated by the function g, enabling effective and consistent online
inference.

Overall, the proposed joint data-model optimization framework significantly
enhances training efficiency by creating novel training data and compressing
existing data. Additionally, our approach enables efficient long-term memory
mechanisms during inference, supporting consistent and continuous information
processing. The following sections detail the background, technical methods,

and experimental results of these methodologies.



2.1 Related Work

In this section, we review key literature relevant to our dissertation, grouped

into two categories: general data-driven learning and large language models.

2.1.1 Data-Driven Learning

Deep neural networks trained on large-scale datasets have achieved strong per-
formance across a wide range of real-world applications [38, 235]. Landmark
architectures like AlexNet [104] and ResNet [60] enabled end-to-end learning of
features directly from raw inputs, surpassing traditional handcrafted method-
ologies [108]. This data-driven paradigm forms the foundation of modern ma-
chine learning systems [15]. However, model performance depends critically on
the diversity and quality of training data [48].

Although deep networks exhibit high representational capacity, they can
easily memorize random labels and noise, raising fundamental questions about
generalization [231]. Addressing overfitting remains a central challenge for build-
ing reliable systems. Regularization techniques such as dropout [179] and noise
injection [71]| aim to suppress spurious correlations and improve robustness to
label noise. These methods highlight the importance of structural inductive
biases and explicit perturbations in achieving generalization. Our work con-
tributes to this objective by introducing regularization through principled data
transformations, enhancing both accuracy and robustness [91, 92].

Data augmentation improves generalization by perturbing input samples
to create plausible variants [13], using techniques like cropping, flipping [104],
and additive noise [12]. Mixup and its extensions interpolate inputs or features
to regularize training and encourage smoother decision boundaries [232, 197].
Adaptive and saliency-aware variants address limitations such as unrealistic or
semantically destructive augmentations [57]. Building on this line of work, our
method introduces informative variation while preserving input locality and

semantic coherence [91, 92].



2.1.2 Large Language Models

The advent of deep learning architectures has reshaped natural language pro-
cessing [39]. Pretraining on large text corpus with scalable architectures achieved
impressive generalization capabilities on general natural language processing
tasks [199]. Generative pretraining transformers (GPT) advanced this paradigm
through autoregressive pretraining, demonstrating that large-scale generative
models trained on diverse text corpora can perform a broad range of tasks with
minimal supervision [16]. These foundational models underpin today’s large
language models (LLMs), which exhibit strong few-shot and zero-shot general-
ization capabilities as they scale in size and data [15].

Transformer architectures process context through a stack of self-attention
and feedforward layers, where each token attends to all others in the sequence
[196]. The self-attention mechanism computes contextualized representations
by projecting input tokens into key, query, and value vectors, then aggregating
values weighted by the similarity between queries and keys. This operation cap-
tures pairwise dependencies across the sequence, allowing each layer to model
token interactions globally. During inference, Transformer decoders maintain a
cache of key and value vectors for previously seen tokens, enabling efficient au-
toregressive generation without recomputing past activations [106]. Extensions
such as Transformer-XL [35] and Compressive Transformers [160]| introduce
mechanisms to preserve and reuse historical context across segments.

As LLMs scale in both parameter count and context length, inference-time
efficiency becomes a central challenge. Sparse attention techniques like Big-
Bird [229] and MlInference [79] limit attention to a subset of tokens, reduc-
ing computational cost. Systems such as Quest [187] and Infinigen [111] in-
troduce KV offloading and retrieval strategies to manage memory usage dur-
ing decoding. However, these methods typically operate without compressing
the KV cache. In contrast, our approach directly compresses the cache, en-
abling inference-time memory reduction without performance loss [97, 98|. This
builds on prior work in sparse Transformers [26, 78, 99| and compressive mem-
ory [2, 96, 160|, advancing practical techniques for KV compression through

principled redundancy elimination.



Chapter 3

Puzzle Mix: Exploiting Saliency
and Local Statistics for Optimal
Mixup

3.1 Introduction

Deep neural network models are the bedrock of modern Al tasks such as object
recognition, speech, natural language processing, and reinforcement learning.
However, these models are known to memorize the training data and make over-
confident predictions often resulting in degraded generalization performance on
test examples [179, 230]. Furthermore, the problem is exacerbated when the
models are evaluated on examples under slight distribution shift [10].

To this end, data augmentation approaches aim to alleviate some of these
issues by improving the model generalization performance [59, 40|. Recently, a
line of research called mizup has been proposed. These methods mainly focus
on creating previously unseen virtual mixup examples via convex combination
or local replacement of data for training [232, 197, 227, 57].

However, the underlying data domains contain rich regional saliency in-
formation (i.e. foreground objects in vision, prominent syllables in speech, in-
formative textual units in language) [174, 83, 42] and exhibit local regularity
structure far from random matrices of numbers [73, 235, 176]. Thus, completely
disregarding these aspects of data could lead to creating mixup examples which
could misguide the training model and undermine the generalization perfor-
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Figure 3.1 A visual comparison of the mixup methods. Puzzle Mix ensures to
contain sufficient saliency information while preserving the local statistics of
each input.

mance.

Motivated by this intuition, we propose Puzzle Mix, a mixup method for
explicitly leveraging the saliency information and the underlying local statistics
of natural examples. Our proposed method jointly seek to find (1) the optimal
mask for deciding how much of the two inputs to reveal versus conceal in the
given region and for (2) the transport for finding the optimal moves in order
to maximize the exposed saliency under the mask. The optimization process is
reminiscent of the sliding block puzzle and thus the name Puzzle Mix. Addition-
ally, we impose the objective to respect the various underlying local statistics
encouraging the optimization to preserve the structural integrity of each data.
The proposed method alternates between finding the optimal mask and opti-
mizing the transport plans, and efficiently generates the mixup examples in a
mini-batch stochastic gradient descent setting.

Furthermore, our method allows us to incorporate adversarial training with-
out any computation overhead. Adversarial training is a method for training a
robust model resistant to adversarial attacks via optimization [127]. We adapt
the fast adversarial training method from Wong et al. [213| and stochastically
include the adversarially perturbed examples with random restarts for robust-
ness.

Our results on CIFAR-100, Tiny-ImageNet, and ImageNet datasets show
significant improvement both in the generalization task and in the adversarial
robustness over existing mixup methods by a large margin.



3.2 Related Work

Data augmentation. = Methods that implement data augmentation aim to
regularize the models from overfitting to the training distribution and improve
the generalization performance by generating virtual training examples in the
vicinity of the given training dataset [13]. Some of the most commonly used
data augmentation techniques are random cropping, horizontal flipping [104],
and adding random noise [12]. Recently, a data augmentation method called
AugMix is proposed to improve both the generalization performance and the
corruption robustness [65]. Our method is complementary to these techniques
and could be used in conjunction in order to further increase the generalization
and robustness performance.

Mixup. Input mixup creates virtual training examples by linearly inter-
polating two input data and corresponding one-hot labels [232]. The method
induces models to have smoother decision boundaries and reduces overfitting
to the training data. Manifold mixup extends this concept from input space to
feature space [197]. Also, Guo et al. [57] proposed an adaptive mixup method,
which improves Input mixup by preventing the generation of improper mixup
data. Yun et al. [227] proposed CutMix which implants a random rectangular
region of the input into another. However, these methods can generate improper
examples by randomly removing important regions of the data, which may mis-
lead the neural network (see Figure 3.1). Our mixup method aims to prevent
these issues by utilizing the saliency signal while preserving the local properties
of the input data.

Saliency.  Simonyan et al. [174] detects object saliency by computing gra-
dients of a pre-trained deep neural network. Subsequently, other methods were
introduced to obtain more precise saliency [240, 201]. However, these methods
require modifying the pre-trained network or training new models to compute
the saliency. Zhou et al. [243] and Selvaraju et al. [171] proposed methods with
the reduced computation cost but at the cost of saliency resolution. We follow
the method from Simonyan et al. [174], which does not require any modification
to the model, to compute the saliency map. The saliency information has been
used in various fields of machine learning {167, 207].

Optimal transport. A transport plan that moves a given distribution to
another at the minimal cost is called the optimal transport [198]|. Also, the
optimal transport with discrete domain can be represented as a linear program
or an assignment problem [136, 198]. The optimal transport problem is widely

10



Method Mixup function h(zg,z1)

Input mixup (1= XNzo + Az
Manifold mixup (1 =XN)f(zo) + Af(z1)
CutMix (1—]13)@.(1}0—{-]13@1}1
Puzzle Mix (1-2) 0z + 20Uz

Table 3.1 Summary of various mixup functions.

applied in various applications areas such as color transfer [158] and domain
adaptation [33]. We formulate a binary transport problem for the optimal move,
which maximizes the exposed saliency under the mask.

3.3 Preliminaries

Let us define x € X to be an input data and y € ) be its output label. Let D
be the distribution over X x ). In mixup based data augmentation method, the
goal is to optimize the model’s loss £ : X x VY x © — R given the data mixup
function h(-) and the mixing distribution ¢ as below.

miniomize(CE(Ly(J)’(Ig[-%l7y1)ED AIEqé(h(xo,:1c1),g(y0,3,/1);0), (3.1)
where the label mixup function is g(yo,v1) = (1 — A)yo + Ay1. Input mixup
uses h(zg,z1) = (1 — A\)zg + Az1. Manifold mixup employs h(zg,z1) = (1 —
A) f(zo) + Af(x1) for some hidden representation f. CutMix defines h(zg, z1) =
(1—1p)©®xo+1p®x for a binary rectangular mask 15, where B = [ry, 7, +
Tw] X [ry, Ty + 4] With A = T2 and © represents the element-wise product.
In other words, B is a randomly chosen rectangle covering \ proportion of the
input. We propose the following mixup function,

h(zo,z1) = (1 — z) @ If g + 2 © I 2, (3.2)

where z; represents a mask in [0,1] with mixing ratio A = 13", 2. Tl and
I1; represent n x n transportation plans of the corresponding data with n di-
mensions. II;; encodes how much mass moves from location i to j after the
transport. From now on, we omit the dependence of y and 6 from the loss
function ¢ for clarity. Table 3.1 summarizes various mixup functions described
above. We begin Section 3.4 with the formal desiderata for our mixup function
and the corresponding optimization objective.

11
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Figure 3.2 (a) Mixed saliency ||h(s(z¢), s(x1))||1. Note the saliency map of each
input s(xy) is normalized to sum up to 1. (b) Total variation of mixed data. (c)
Cross entropy loss of mixup data and the corresponding soft-label evaluated by
the vanilla classifier (ResNet18). (d) Top-1 prediction accuracy of mixed data.
Prediction is counted as correct if the Top-1 prediction belongs to {yo, y1}. (e)
Top-2 prediction accuracy of mixed data. Prediction is counted as correct if the
Top-2 predictions are equal to {yo, y1 }. Manifold mixup is omitted in (a) and
(b) as manifold mixup generates mixup examples in the hidden space not in
the input space.

3.4 Methods

Our goal is to maximally utilize the saliency information of each input while
respecting the underlying local statistics of the data. First, in order to maxi-
mally utilize the saliency information, we seek to find the optimal mixing mask
z and the optimal transport plans II under the following criteria.

e Given a pair of transported data and a specific region, the mask z should
optimally reveal more salient data of the two while masking the less salient
one in the given region.

e Given a data x and the mask z, the transport II should find the optimal
moves that would maximize the saliency of the revealed portion of the
data.

The criteria above motivates us to maximize for (1—z) ®IIJs(zo) + 2z O I s(x1).
Note, we denote the saliency of the input z as s(x) which is computed by
taking ¢ norm of the gradient values across input channels. Figure 3.2 (a)
shows the proposed mixup function well preserves the saliency information after
mixup. Second, in order to respect the underlying local statistics of the data
[73, 235, 176], we consider the following criteria.

e The saliency information can be noisy, which could lead to a suboptimal
solution. Therefore, we add spatial regularization terms ¢ and ¢; ; to con-

12



trol the smoothness of the mask and regional smoothness of the resulting
mixed example. Figure 3.2 (b) compares the local smoothness measured
in total variation.

e We ensure the structural integrity within each data is generally preserved
by considering the transport cost Cj; (defined as the distance between the
locations i and j). Also, to further ensure the local salient structure of the
data is preserved without being dispersed across after the transport, we
optimize for the binary transport plans as opposed to continuous plans.

Evaluation results on the pretrained vanilla classifier in Figure 3.2 (c), (d),
(e) show our mixup examples have the smallest loss and the highest accuracy
compared to other methods, verifying our intuitions above. Moreover, we op-
timize the main objective after down-sampling the saliency information s(x)
with average pooling to support multi-scale transport and masking. From now
on, we denote n as the down-sampled dimension. In practice, we select the
down-sampling resolution randomly per each mini-batch.

To optimize the mask z, we first discretize the range of the mask value. Let
L denote the discretized range {% |t=0,1,...,m}. In addition, to control the
mixing ratio of given inputs, we add a prior term p(z;), which follows a binomial
distribution. We now formalize the complete objective in Equation (3.3).

miniznize — (1 = 2) © II{s(xo) ||, (3.3)
z€L™
Mo, IT; €{0,1} %™

—lz o is(z1)lly

+B8 ) vz +y Y, 64z 2)

(4,5)EN (1,5)EN
—n Y logp(z)+& Y (T, C)
i k=0,1
subject to IIxl, =1,, IIJ1, =1, for k=0,1.

After solving the optimization problem in Equation (3.3), we obtain the
mixed example h(zg,z1) = (1 — 2*) © [I§Tzg + 2* © II]T21 which is then used
for the model training as in Equation (3.1). Figure 3.3 illustrates the mask z
and the transport plan IT optimized with Equation (3.3).

We solve this optimization problem via alternating minimization through
iterating first over z and then simultaneously over IIy and II;. In mixup augmen-
tation, however, one needs to be able to efficiently generate the mixed examples
as the generation process takes place per each mini-batch. Therefore, we opti-
mize for one complete cycle of the alternating minimization, as repeated cycles

13



Saliency Before Transport After Transport

L

Input Before Transport After Transport

Figure 3.3 Illustration of Puzzle Mix process. After the transport, the salient
regions (highlighted in green) replace the other regions, so that the salient
information still remains after the mixup. The first row represents the saliency
information after down-sampling, i.e., s(z), the masked saliency (z ® s(x)), and
the masked saliency after transport (z ® IITs(z)) respectively. The second row
shows the corresponding data.

require additional network evaluations, for efficiency. As for the initialization,
we optimize the mask z with IIj initialized as identity transport, and then opti-
mize each Il with the previously solved z. We now formally discuss individual
optimization problems in Section 3.4.1 and Section 3.4.2.

3.4.1 Optimizing Mask

Given IIy and II;, we seek to solve the following discrete optimization problem
over z in Equation (3.4). The objective is to decide how to best mix the two
transported inputs jointly based on the region saliency measure (unary), the
label and data local smoothness (pairwise), and the mixing weight log prior
(mix prior) criteria.

mlgglzeZui(zi) +4 Z (i, 25) (3.4)
@ (i.9)eN
+y D bijlziz) —n Y logp(z),
(i,4)EN i

where the unary term u;(z;) is defined as z;(II]s(z0)); + (1 — z;) (] s(x1));. We
define the neighborhood N as a set of adjacent regions, and use the following
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Figure 3.4 Visualization of different components in the mask optimization. Two
rectangles in the top show the two inputs zg and x1, and the rectangle in the
bottom show the mixed output h(xg,x1). Figure reproduced with permission
from Julien Mairal.

pairwise terms and the prior term. Figure 3.4 visualizes different components
in Equation (3.4).

Definition 1. (Label smoothness) ¥(zi, zj) = (z; — zj)*.

For data local smoothness, we measure the distance between input regions.
Let d,, denote the distance function. First, we define pairwise terms under the
binary case, £ = {0,1}, and then extend them to the multi-label case.

Definition 2. (Data local smoothness for binary labels)
Let x; represent the it" region of data xy,. Then, gb?’j(zi, zj) = dp(Tz; 0, T2 5)-

The discrete optimization problem in Equation (3.4) is a type of multi-
label energy minimization problem and can be efficiently solved via a-8 swap
algorithm [14], which is based on the graph-cuts. In the binary label case, finding
the minimum s-t cut in the graph returns an equivalent optimal solution if the
pairwise term satisfies the submodularity condition [102]. In our problem, the
pairwise term is e; j(2;, 2j) = BY(2i, 2;) + ¥4 (2, 2;). We now assume that the
function values of d,, are bounded in [0,1], which is generally satisfied when data
values are bounded in [0,1].

Proposition 1. Suppose d,, function is bounded in [0,1] and ¢ = ¢°. If v < B,
then e; j(zi, zj) satisfies submodularity for z;, z; € {0,1}.

Proof. €(0,0)+¢(1,1) = v¢;,;(0,0) +7¢5,;(1,1) < 2y < 28 = (0, 1)+ 5v(1,0)
<e(0,1) +e(1,0). O
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Figure 3.5 (Top row) Puzzle Mix images with increasing mixing weight \. (Bot-
tom row) Puzzle Mix images with increasing smoothness coefficients, 5 and ~.
Note that the results are obtained without transport.

For multi-label case, the a-8 swap algorithm iteratively applies graph-cut
as a sub-routine and converges to a local-minimum if the pairwise term satis-
fies pairwise-submodularity [169]. We can guarantee pairwise-submodularity by

slightly modifying (Z)gj as

¢75(0,0) = ¢ ;(0,0) + (¢} ;(0,1) + ¢! ;(1,0)) /2
¢75(0,1) = ¢! ;(0,1) + (62 ,(0,0) + 6¢ ;(1,1)) /2
¢75(1,0) = ¢! ;(1,0) + (67 ,(0,0) + ¢? ;(1,1)) /2
¢ 5(1,1) = ¢ ;(1,1) + (6};(0,1) + ¢F ;(1,0)) /2.
It is important to note that, qb?:j(l, 0) + ¢§?jj(0, 1) — ¢i-’:j(0,0) - i?:j(l, 1) =0.

Definition 3. (Data local smoothness for the multi labels)
0ig (2, 2j) = 21208 (1, 1) + 2i(1 = 2) 8% 5 (1, 0) + (1= 20) 27 5 (0, 1) + (1 — 2;) (1 —
zj)¢)§’:j(0,0), Vi, 25 € L.

Proposition 2. With ¢;; defined as Definition 3, e;; satisfies pairwise sub-
modularity.

16



Proof. We can represent ¢; ; as follows:

?l' 1,0) + ?/- 0,1) — i?,.()’() _ i?’, 1,1
¢i,j(2i,2j)=f(zi,zj)¢’j( ) (b’ﬂ( ) ¢J( ) ,]( )

2
L, 90000 +67,(11) — 65(0,0) — 67,0 1)
! 2
+2 o 5(0,1) + ¢? ;(1,1) — ¢ ;(0,0) — ¢F;(1,0)
2

+6Y;(0,0),

where f(z;,z2;) = (1 — 2zi)2; + zi(1 — z;). By definition ¢f’/j(1,0) + ¢f:j(0, 1) —

(;5%(0, 0) — qﬁg”’j(l, 1) = 0, and thus, ¢; (2, 2;) can be represented as the form
v, v, b, v,

of 2¢;}; + 2;¢;% + c. Thus, Yo,y € L, ¢ij(2,y) + ¢ij(y,x) = o + Yo% +

c+ y¢f’1j + x¢?fj + ¢ = ¢ j(z,x) + ¢i;(y,y), which means ¢; ; satisfies pairwise

submodularity.

By definition ¢ satisfies pairwise submodularity, and by Lemma 1, e; ; sat-
isfies pairwise submodularity. O

Lemma 1. If1), ¢ satisfies pairwise submodularity and 3, v € Ry, then B+~
satisfies pairwise submodularity.

Finally, we use the prior term to control the ratio of inputs in the mixed
output. For the given mixing weight A, which represents the ratio of x; with
respect to x(, we define the prior term p to satisfy E.,,[z;] = A, Vi. Specifically,
for the label space £ = {%| t =0,...,m}, we define the prior term as p(z; =
Ly = (M1 =A™ for t=0,1,...,m. In other words, z; ~ L B(m,\).

In Figure 3.5, we provide the resulted mixup images using the optimal
mask from Equation (3.4). Specifically, we visualize how the Puzzle Mix images
change by increasing the mixing weight A and the coefficients of the smoothness

terms, 8 and .

3.4.2 Optimizing Transport

After optimizing the mask z, we optimize the transportation plans for the input
data under the optimal mask z*. Our objective with respect to transportation
plans is the following.
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minimize — ||(1 — 2") © II{s(z0)]|,
o, IT; €{0,1}™*™

= [I(z" © O{s(z1)|l,
+£ Z <Hkac>
k=0,1
subject to IIx1, = 1,, IIJ1, =1, for k=0,1.

Note the problem is completely separable as two independent optimization prob-
lems of each IIj. Let s(x1); denote the i entry of the n-dimensional column
vector s(x1). The term ||z* ® II]s(z1) ||, can be represented as >y Zrs(wn)ill g
= (I1y, s(x1)2*T). Finally, the transport optimization problem of IT; becomes

minimize (I1y,C") (3.5)
Hle{O,l}"X”

subject to 1111, =1,, 171, =1,,

where C" = §C — s(z1)2*T. Cj; is the cost of moving the it" region to the j*
position, which consists of two components. The first component is the distance
£Cyj, which is defined as a distance from 7 to j. The second component is the
saliency term, which discounts the transport cost with the saliency value of the
ith region if the mask of j* position is non-zero. Briefly speaking, the larger
the saliency value, the more the discount in the transport cost.

The optimization problem in Equation (3.5) can be solved exactly by using
the Hungarian algorithm and its variants with time complexity of O(n3) [136,
81]. As we need to efficiently generate mixup examples per each mini-batch,
this can be a computational bottleneck as n increases. Thus, we propose an ap-
proximate algorithm that can be parallelized on GPUs and efficiently computed
in batches. The proposed algorithm can quickly decrease the objective (IT, C”)
and converges to a local-minimum within n(n —1)/2 4 1 steps.

Algorithm 1 progressively alternates between row-wise and column-wise op-
timizations. The algorithm first minimizes (II,C’) only with the II1,, = 1,
constraint. However, since the optimization is done without the column con-
straint, there can be multiple 1 values in a column of II. In the following step,
the column with multiple 1 values leaves only one 1 in the row with the smallest
cost. We denote the result as I1,,;, in Algorithm 1. The corresponding cost en-
tries for the rows that do not remain in I, are penalized with a large additive
value, and the 1 values are moved to the other columns in the next iteration.

Our algorithm can also take advantage of intermediate Il,,;, as a solution,
supported by the following two properties. We suppose that transport cost
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Algorithm 1 Masked Transport

Input: mask z*, cost C’, large value v
Initialize C(0) = 7, t =0

repeat
target = argmin(C®, dim = 1)
IT = Opxen

fori=0ton—1do
I1[i, target[i]] = 1
end for
Cconflict = C(t) oI+ U(l - H)
source = argmin(Ceon fiict, dim = 0)
ILyin = Onxn
for j=0ton—1do
ILyin[sourcelj], j] = 1
end for
Hwin = Hwin oIl
Hlose = (1 - me) oII
O = CO 4 1T
t=t+1
until convergence
Return: 1L,

matrix C has zeros in diagonal entries and positive values in others. In addition,
let TI® and Hgin denote II and I, at the end of t** step in Algorithm 1.

Proposition 3. Suppose z* has values in {0,1}. Then for j s.t. zj* =1, jth

(®)

column of IL, ;. has exactly one 1.

Proof. By the definition of C(©) = £C' — s(x)2*T, for j s.t. 27 =1, §" row of

C© has a minimum at j* entry. Thus, j** column of H,El?z-)n has exactly one 1

and others are 0. Suppose that, the claim is satisfied for ngn and ngn [i(4),7] is

1 for j s.t. 2j = 1. Then, by the definition of Hggn, C’Sz)n [i(7), 7] is the minimum

of i(§)" row of C® and the row will not be updated in C**+1). Thus, i(j)*" row
of C*t1) has a minimum at j** entry and j** column of HS;;U has exactly one

1. By induction, the claim holds. O

Proposition 4. Under the assumption of Proposition 3, the partial objective

t .
< Hq(uzn, C'z* > decreases as t increases.
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Proof. By Proposition 3, for j s.t. 27 =1, 4t column of ngn has exactly one
1. Let i(j;t) denote the corresponding row index with the entry 1. Then, it
is enough to prove that C'[i(j;t + 1),j] < C'[i(j;t),j]. However, in the last
part of the proof of Proposition 3, we showed that i(j;¢)!" row of C+1) has
a minimum at j** entry, and thus II**V[i(j;¢), j] = 1. By Algorithm 1, index
i(j;t+1) satisfies CHHV[i(5;t41), 5] < CED[i, 4], Vi s.t. TTED[i, §] = 1. Thus,
CUD[i(j;t + 1), 4] < CEHD[i(4;1), 5]. Finally, TT*D[i, 5] = 1 means that cost
from i to j is not updated, i.e., C¢HV [, 5] = C'[i, j]. O

Finally, we introduce the convergence property of Algorithm 1.

Proposition 5. Algorithm 1 converges to a local-minimum with respect to the
update rule at most n(n —1)/2 + 1 steps.

3.4.3 Adversarial Training

Since our mix-up strategy utilizes the gradients of the loss function with respect
to the given inputs for saliency computation, we can incorporate adversarial
training in our mix-up method without any additional computation cost.

For adversarial training on mixup data, we adapt the fast adversarial train-
ing method of Wong et al. [213], which adds a uniform noise before creating
an adversarial perturbation. As shown in Algorithm 2, we add the adversarial
perturbation to the proper location of the mixed output, i.e., adding an adver-
sarial signal to the corresponding input and location specified by z. Note that
the adversarial perturbation is added to each data probabilistically to prevent
possible degradation in the generalization performance.

3.5 Implementation Details

First, to solve the discrete optimization problem with respect to the mask z,
we use a-f3 swap algorithm from the pyGCO python wrapper!. Although the
minimization is performed example-wise in CPUs, the a-8 swap algorithm con-
verges quickly, since we restrict the size of the graph with down-sampling. Note
that, in our experiments, the computational bottleneck of the method is in the
forward-backward passes of the neural network. In our experiments, we use la-
bel space £ = {0, %, 1}. In addition, we randomly sample the size of the graph,
i.e., size of mask z, from {2 x 2, 4 x 4, 8 x 8, 16 x 16}, and down-sample the
given mini-batch for all experiments.

We normalize the down-sampled saliency map, which is used as the unary
term, to sum up to 1. This allows us to use consistent hyperparameters across

"https://github.com/Borda/pyGCO
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Algorithm 2 Stochastic Adversarial Puzzle Mix
Input: data xg, x1, attack ball €, step 7, probability p
Tjclean = T; for 1 =0,1
Sample v; ~ B(1,p) fori=0,1
for i =1,2do

if v, == 1 then
ki ~ Uniform(—e,e)
Ti 4 T; + K;
end if
end for
Calculate gradient V;l(z;) fori=0,1
Optimize z* and II} in Equation (3.3)
Sample 6 ~ Uniform(0,1)
for i =0,1 do
if v, == 1 then
Ki < ki + 7 sign(Vl(z;))
Ki < clip(k;, —€, €)
T < T clean +0 Ri
end if
end for
Return: (1 —z*) © Tz + 2* © I} T2y

all the models and datasets. To measure the distance between the two adjacent
data regions, we compute the mean of the absolute values of differences on the
boundaries. For the mixing ratio A, we randomly sample A from Beta(a, «)
at each mini-batch. All of the computations in our algorithm except a-3 swap
are done in mini-batch and can be performed in parallel in GPUs. Note that
for-loops in Algorithm 1 can be done in parallel by using the scatter function
of PyTorch [147].

Since we calculate the saliency information by back-propagating the gradi-
ent of loss function through the model, we can utilize this gradient informa-
tion without any computational overhead. We regularize the gradient of the
model with mixup data as Vl(h(xo,x1),9(yo,v1);0) + %)\Cle(m (Vol(zo,y0;0) +
Vol(x1,y1;0)). This additional regularization helps us to improve generalization
performance on Tiny-ImageNet and ImageNet.
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3.6 Experiments

We train and evaluate classifiers on CIFAR-100 [103], Tiny-ImageNet 28], and
ImageNet [38] datasets. We first study the generalization performance and ad-
versarial robustness of our method (Section 3.6.1). Next, we show that our
method can be used in conjunction with the existing augmentation method
(AugMix) to simultaneously improve the corruption robustness and generaliza-
tion performance (Section 3.6.2). Finally, we perform ablation studies for our
method (Section 3.6.3).

3.6.1 Generalization Performance and Adversarial Robustness

CIFAR-100. We train two residual neural networks [59]: WRN28-10 [228]
and PreActResNet18 [61]. We follow the training protocol of Verma et al. [197],
which trains WRN28-10 for 400 epochs and PreActResNet18 for 1200 epochs.
We reproduce the mixup baselines [232, 197, 227, 65] and compare the baselines
with our method under the same experimental settings described above. We
denote the experiments as Vanilla, Input, Manifold, CutMix, AugMiz, Puzzle
Miz in the experiment tables.

Note however, our mixup method requires an additional forward-backward
evaluation of the network per mini-batch to calculate the saliency signal. For
some practitioners, a fairer comparison would be to compare the performances
at a fixed number of network evaluations (i.e., for power conservation). In order
to compare our method in this condition, we also test our method trained
for half the epochs and with twice the initial learning rate. We denote this
experiment as Puzzle Miz (half) in the experiment tables.

In addition, we report experiments with the adversarial training described
in Algorithm 2 with p = 0.1. We denote this experiment as Puzzle Mix (adv) in
the tables. We assess the adversarial robustness against FGSM attack of 8/255
l~ epsilon ball following the evaluation protocol of Zhang et al. [232], Verma
et al. [197], Yun et al. [227] for fair comparison. The results are summarized in
Table 3.2 and Table 3.3.

We observe that Puzzle Mix outperforms other mixup baselines in general-
ization and adversarial robustness with WRN28-10 (Table 3.2) and PreActRes-
Net18 (Table 3.3). With WRN28-10, Puzzle Miz improves Top-1 test error over
the best performing baseline by 1.45%, and Puzzle Miz (half) outperforms by
1.17%. Puzzle Miz (adv) improves FGSM error rate over 8.41% than AugMix
while achieving 1.39% lower Top-1 error rate than Manifold mixup, which had
the best Top-1 score among baselines. We observe similar results with PreAc-
tResNet18. Puzzle Miz (adv) reduces the Top-1 error rate by 1.14% and the
FGSM error rate by 12.98% over baselines.
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Top-1 Top-5 FGSM

Method Error(%) Error(%) Error(%)
Vanilla 21.14 6.33 63.92
Input 18.27 4.98 56.60
Manifold 17.40 4.37 60.70
Manifoldf 18.04 - -
CutMix 17.50 4.69 79.34
AugMix 20.44 5.74 55.59
Puzzle Mix 15.95 3.92 63.71
Puzzle Mix (half) 16.23 3.90 66.74
Puzzle Mix (adv) 16.01 3.91 47.18
Puzzle Mix (half, adv) 16.39 3.94 46.95

Table 3.2 Top-1, Top-5, and FGSM error rates on CIFAR-100 dataset of
WRN28-10 trained with various mixup methods (400 epochs). { denotes the
result reported in the original paper. Top-1 and Top-5 results are median test
errors of models in the last 10 epochs.

Tiny-ImageNet. We train PreActResNet18 network on Tiny-ImageNet dataset,
which contains 200 classes with 500 training images and 50 test images per class
with 64 x 64 resolution [28].

As in the CIFAR-100 experiment, Puzzle Mix shows significant performance
gains both on the generalization performance and the adversarial robustness
compared to other mixup baselines (Table 3.4).

Puzzle Mix trained with the same number of epochs achieves 36.52% in Top-
1 test error, 5.47% lower than the strongest baseline, and the model trained with
same network evaluations (half) outperforms the best baseline by 4.35%. Puzzle
Mix trained with stochastic adversarial method (adv) achieves best Top-1 and
FGSM error rate (e = 4/255) compared to other mixup baselines providing
3.44% lower Top-1 error rate and 5.12% lower FGSM error rate.

ImageNet. In ImageNet experiment, we use ResNet-50 to compare the per-
formance. In order to train the model on ImageNet more efficiently, we utilize
the cyclic learning rate, and use pre-resized images following the training pro-
tocol in Wong et al. [213] which trains models for 100 epochs. Consistent with
the previous experiments on CIFAR-100 and Tiny-ImageNet, Puzzle Mix shows
the best performance in both Top-1 / Top-5 error rate, achieving 0.43%, 0.24%
improvement each, compared to the best baseline (Table 3.5).

We further test Puzzle Mix according to the experimental setting of CutMix
[227] which trains models for 300 epochs and measures the best test accuracy
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Top-1 Top-5 FGSM

Method Error(%) Error(%) Error(%)
Vanilla 23.67 8.98 88.89
Input 23.16 7.58 70.09
Manifold 20.98 6.63 73.09
CutMix 23.20 8.09 86.38
AugMix 24.69 8.38 76.99
Puzzle Mix 19.62 5.85 79.47
Puzzle Mix (half) 20.09 5.59 75.72
Puzzle Mix (adv) 19.84 6.11 57.11
Puzzle Mix (half, adv) 19.96 6.20 59.33

Table 3.3 Top-1, Top-5, and FGSM error rates on CIFAR-100 dataset of Pre-
ActResNet18 trained with various mixup methods.

among the training. As shown in table 3.6, Puzzle Mix outperforms baselines
consistently.

3.6.2 Robustness Against Corruption

Hendrycks et al. [65] proposed AugMix which performs Input mixup between
clean and augmented images to improve robustness against corrupted datasets
as well as the generalization performance. AugMix uses Jensen-Shannon diver-
gence (JSD) between network outputs of a clean image and two AugMix images
as a consistency loss. However, computing the JSD term requires triple the net-
work evaluations compared to other mixup methods to train the network.

We found that simply using our mixup algorithm between two AugMix
images, improves both the generalization and corruption robustness over the
training strategy with the JSD objective. Note that our method requires only
one additional (versus two) network evaluation per each mini-batch. We denote
this experiment setting as Puzzle Miz (aug).

We use CIFAR-100-C dataset [63] to evaluate the corruption robustness. The
dataset consists of 19 types of corruption, including noise, blur, weather, and
digital corruption types. In Table 3.7, we report average test errors on CIFAR-
100-C dataset as well as test errors on the clean CIFAR-100 test dataset. Ta-
ble 3.7 demonstrates that our method using AugMix images improves both the
generalization performance and the corruption accuracy by 3.95% and 2.31%
each over AugMix baseline.
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Top-1 Top-5 FGSM

Method Error(%) Error(%) Error(%)
Vanilla 42.77 26.35 91.85
Input 43.41 26.98 88.68
Manifold 41.99 25.88 89.25
Manifold 41.30 26.41 -
CutMix 43.33 24.48 87.19
AugMix 44.03 25.32 90.00
Puzzle Mix 36.52 18.95 92.52
Puzzle Mix (half) 37.64 19.37 92.57
Puzzle Mix (adv) 38.55 20.48 82.07
Puzzle Mix (half, adv) 38.14 19.70 83.91

Table 3.4 Top-1, Top-5, and FGSM error rates on Tiny-ImageNet dataset for
PreActResNet18 trained with various mixup methods.

Top-1 Top-5

Model Error(%) Error(%)
Vanilla 24.31 7.34
Input 22.99 6.48
Manifold 23.15 6.50
CutMix 22.92 6.55
AugMix 23.25 6.70
Puzzle Mix 22.49 6.24

Table 3.5 Top-1 and Top-5 error rates on ImageNet on ResNet-50 following the
training protocol in Wong et al. [213]| (100 epochs).

3.6.3 Ablation Study

The generalization performance of Puzzle Mix stems from saliency-based multi-
label masking and transport. We verified the effectiveness of these two factors
in comparative experiments on CIFAR-100 with WRN28-10. Table 3.8 shows
that Puzzle Mix with the binary label space (binary) has 1.44% higher Top-1
error rate than multi-label case, and Puzzle Mix without transport (mask only)
has 0.43% higher Top-1 error rate than Puzzle Mix with transport.

We also verify the effects of different factors in stochastic adversarial train-
ing. In Algorithm 2, we add an adversarial perturbation to each data based
on each Bernoulli sample v; and apply linear decay with § sampled from the
uniform distribution. From Table 3.9, we observe that using two independent
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Best Top-1 Best Top-5

Model Error(%) Error(%)
Vanilla 23.68 7.05
Input 22.58 6.40
Manifold 22.50 6.21
CutMix 21.40 5.92
Puzzle Mix 21.24 5.71

Table 3.6 Best Top-1 and Top-5 error rates on ImageNet on ResNet-50 following
the training protocol in [227] (300 epochs).

Top-1 Corruption

Method Error(%) Error(%)
Vanilla 21.14 49.08
AugMix 20.45 32.22
Puzzle Mix 15.95 42.46
Puzzle Mix (aug) 16.50 29.91

Table 3.7 Top-1 and Corruption error rates on CIFAR-100 and CIFAR-100-C
on WRN28-10.

random variables vy and vy (adv) has significant improvement in adversarial
robustness over using one variable (19 = v1). In the absence of linear decaying
(fgsm), there is improvement in the FGSM error rate of 4.02%, but the Top-1
error increases by 0.41%. In all experiments, p is set to 0.1. We use FGSM
attack of 8/255 l epsilon-ball and 7-step PGD attack with a 2/255 step size.

3.7 Conclusion

We have presented Puzzle Mix, a mixup augmentation method for optimally
leveraging the saliency information while respecting the underlying local statis-
tics of the data. Puzzle Mix efficiently generates the mixup examples in a mini-
batch stochastic gradient descent setting and outperforms other mixup baseline
methods both in the generalization performance and the robustness against ad-
versarial perturbations and data corruption by a large margin on CIFAR-100,
Tiny-ImageNet, and ImageNet datasets.
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Top-1 Top-5

Method Error(%) Error(%)
Vanilla 21.14 6.33
Puzzle Mix 15.95 3.92
Puzzle Mix (binary) 17.39 4.34
Puzzle Mix (mask only) 16.38 3.78

Table 3.8 Top-1 and Top-5 rates on CIFAR-100 dataset of WRN28-10 trained

with our mixup methods.

Top-1 FGSM  PGD

Method Error(%) Error(%) Error(%)
Puzzle Mix (adv) 16.01 47.18 90.18
Puzzle Mix (fgsm) 16.42 43.16 91.19
Puzzle Mix (vo=u1) 16.66 65.90 94.05

Table 3.9 Top-1, FGSM, and PGD error rates on CIFAR-100 dataset of WRN28-
10 trained with our adversarial mixup methods.
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Chapter 4

Co-Mixup: Saliency Guided Joint
Mixup with Supermodular
Diversity

4.1 Introduction

Deep neural networks have been applied to a wide range of artificial intelligence
tasks such as computer vision, natural language processing, and signal process-
ing with remarkable performance [166, 39, 141|. However, it has been shown
that neural networks have excessive representation capability and can even fit
random data [230]. Due to these characteristics, the neural networks can easily
overfit to training data and show a large generalization gap when tested on
previously unseen data.

To improve the generalization performance of the neural networks, a body
of research has been proposed to develop regularizers based on priors or to
augment the training data with task-dependent transforms [13, 34|. Recently,
a new task-independent data augmentation technique, called mizup, has been
proposed [232]. The original mixup, called Input Mizup, linearly interpolates a
given pair of input data and can be easily applied to various data and tasks,
improving the generalization performance and robustness of neural networks.
Other mixup methods, such as manifold mizup [197] or CutMiz [227], have
also been proposed addressing different ways to mix a given pair of input data.
Puzzle Miz |91] utilizes saliency information and local statistics to ensure mixup

28



Input batch §

Random sampled pair
Input Mixup CutMix Puzzle Mix

Weasel (0.6) Weasel (0.8) Weasel (0.5) Bird (0.4) Bird (0.4) Shark (1.0 Bird (0.2)
Deer (0.4) Deer (0.2) Deer (0.5) Fish (0.6) Dog (0.6) ark (1.0) Eﬁ’ﬁ Egz;
18] .

Figure 4.1 Example comparison of existing mixup methods and the proposed
Co-Mixup.

data to have rich supervisory signals.

However, these approaches only consider mixing a given random pair of
input data and do not fully utilize the rich informative supervisory signal in
training data including collection of object saliency, relative arrangement, etc.
In this work, we simultaneously consider mix-matching different salient regions
among all input data so that each generated mixup example accumulates as
many salient regions from multiple input data as possible while ensuring di-
versity among the generated mixup examples. To this end, we propose a novel
optimization problem that maximizes the saliency measure of each individual
mixup example while encouraging diversity among them collectively. This for-
mulation results in a novel discrete submodular-supermodular objective. We
also propose a practical modular approximation method for the supermodular
term and present an efficient iterative submodular minimization algorithm suit-
able for minibatch-based mixup for neural network training. As illustrated in the
Figure 4.1, while the proposed method, Co-Mizup, mix-matches the collection
of salient regions utilizing inter-arrangements among input data, the existing
methods do not consider the saliency information (Input Mixup & CutMix) or
disassemble salient parts (Puzzle Mix).

We verify the performance of the proposed method by training classifiers on
CIFAR-100, Tiny-ImageNet, ImageNet, and the Google commands dataset [103,
28, 38, 205]. Our experiments show the models trained with Co-Mixup achieve
the state of the performance compared to other mixup baselines. In addition to
the generalization experiment, we conduct weakly-supervised object localization
and robustness tasks and confirm Co-Mixup outperforms other mixup baselines.
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4.2 Related work

Mixup. Data augmentation has been widely used to prevent deep neural net-
works from over-fitting to the training data [12]. The majority of conventional
augmentation methods generate new data by applying transformations depend-
ing on the data type or the target task [34]|. Zhang et al. [232] proposed mizup,
which can be independently applied to various data types and tasks, and im-
proves generalization and robustness of deep neural networks. Input mizup [232]
linearly interpolates between two input data and utilizes the mixed data with
the corresponding soft label for training. Following this work, manifold mizup
[197] applies the mixup in the hidden feature space, and CutMiz [227] suggests a
spatial copy and paste based mixup strategy on images. Guo et al. [57] trains an
additional neural network to optimize a mixing ratio. Puzzle Mix [91] proposes
a mixup method based on saliency and local statistics of the given data. In this
paper, we propose a discrete optimization-based mixup method simultaneously
finding the best combination of collections of salient regions among all input
data while encouraging diversity among the generated mixup examples.

Saliency. The seminal work from Simonyan et al. [174] generates a saliency
map using a pre-trained neural network classifier without any additional train-
ing of the network. Following the work, measuring the saliency of data us-
ing neural networks has been studied to obtain a more precise saliency map
[240, 201] or to reduce the saliency computation cost [243, 171]. The saliency
information is widely applied to the tasks in various domains, such as object
segmentation or speech recognition [82, 84].

Submodular-Supermodular optimization. A submodular (supermodu-
lar) function is a set function with diminishing (increasing) returns property
[137]. It is known that any set function can be expressed as the sum of a sub-
modular and supermodular function [125], called BP function. Various problems
in machine learning can be naturally formulated as BP functions [44], but it
is known to be NP-hard [125]. Therefore, approximate algorithms based on
modular approximations of submodular or supermodular terms have been de-
veloped [76]. Our formulation falls into a category of BP function consisting
of smoothness function within a mixed output (submodular) and a diversity
function among the mixup outputs (supermodular).
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4.3 Preliminary

Existing mixup methods return {h(z1,z;(1)); - - A(Tm, Tim))} for given input
data {z1,..., 2y}, where h : X x X — X is a mixup function and (i(1),...,i(m))
is a random permutation of the data indices. In the case of input mixup,
h(z,z') is Az + (1 — A/, where A € [0,1] is a random mixing ratio. Mani-
fold mixup applies input mixup in the hidden feature space, and CutMix uses
h(z,2") =1p®ax+ (1 —1p)©a', where 15 is a binary rectangular-shape mask
for an image = and © represents the element-wise product. Puzzle Mix defines
h(z,z") as z0ITx+(1—2)OII'Ta’, where IT is a transport plan and z is a discrete
mask. In detail, forz € R, Il € {0,1}" and z € L for L = {£ |1 =0,1,...,L}.

In this work, we extend the existing mixup functions as h : X™ — X™ which
performs mixup on a collection of input data and returns another collection. Let
xp € R™*™ denote the batch of input data in matrix form. Then, our proposed
mixup function is

h(zxp) = (9(21 OxB)y-- s g(Zm © HUB)),

where z; € L™*" for j = 1,...,m' with £ = {% |l =0,1,...,L} and ¢ :
R™*™ — R™ returns a column-wise sum of a given matrix. Note that, the k"
column of z;, denoted as z;;, € L™, can be interpreted as the mixing ratio
among m inputs at the k' location. Also, we enforce lzjkll1 = 1 to maintain
the overall statistics of the given input batch. Given the one-hot target labels
yp € {0,1}™*C of the input data with C classes, we generate soft target labels
for mixup data as yLo; for j = 1,...,m/, where 6; = 23} |z, € [0,1]™
represents the input source ratio of the j* mixup data. We train models to
estimate the soft target labels by minimizing the cross-entropy loss.

4.4 Method
4.4.1 Objective

Saliency. Our main objective is to maximize the saliency measure of mixup
data while maintaining the local smoothness of data, i.e., spatially nearby
patches in a natural image look similar, temporally adjacent signals have sim-
ilar spectrum in speech, etc. [91]. As we can see from CutMix in Figure 4.1,
disregarding saliency can give a misleading supervisory signal by generating
mixup data that does not match with the target soft label. While the existing
mixup methods only consider the mixup between two inputs, we generalize the
number of inputs m to any positive integer. Note, each k' location of outputs
has m candidate sources from the inputs. We model the unary labeling cost as
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the negative value of the saliency, and denote the cost vector at the k™ location
as ¢ € R™. For the saliency measure, we calculate the gradient values of train-
ing loss with respect to the input and measure £5 norm of the gradient values
across input channels [174, 91]. Note that this method does not require any
additional architecture dependent modules for saliency calculation. In addition
to the unary cost, we encourage adjacent locations to have similar labels for the
smoothness of each mixup data. In summary, the objective can be formulated
as follows:

Z Z cLzjg + 5 Z Z — 2] 1 Zjk) = 1 Z Z log p(2 1),

j=1 k=1 j=1 kk’)e/\/’ j=1 k=1

where the prior p is given by z;; ~ %Multi(L,/\) with A = (A, ..., ) ~
Dirichlet(a, . ..,a), which is a generalization of the mixing ratio distribution
of [232], and N denotes a set of adjacent locations (i.e., neighboring image
patches in vision, subsequent spectrums in speech, etc.).

Diversity. Note that the naive generalization above leads to the identical
outputs because the objective is separable and identical for each output. In
order to obtain diverse mixup outputs, we model a similarity penalty between
outputs. First, we represent the input source information of the j* output by
aggregating assigned labels as ) ;'_; z; . For simplicity, let us denote Y, z;x
as 0;. Then, we measure the similarity between o;’s by using the inner-product
on R™. In addition to the input source similarity between outputs, we model
the compatibility between input sources, represented as a symmetric matrix
Ac € R™. Specifically, Acli1,i2] quantifies the degree to which input 4; and
19 are suitable to be mixed together. In summary, we use inner-product on A =
(1—w)I4+wA, for w € [0, 1], resulting in a supermodular penalty term. Note that,
by minimizing (0j,05)4 = oJTAoj/, Vj # j', we penalize output mixup examples
with similar input sources and encourage each individual mixup examples to
have high compatibility within. In this work, we measure the distance between
locations of salient objects in each input and use the distance matrix A.[i,j] =
|argmax;,s;[k] — argmax;,s;[k]||1, where s; is the saliency map of the i*! input
and k is a location index (e.g., k is a 2-D index for image data). From now on,
we denote this inner-product term as the compatibility term.

Over-penalization. The conventional mixup methods perform mixup as many
as the number of examples in a given mini-batch. In our setting, this is the case
when m = m’. However, the compatibility penalty between outputs is influenced
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Figure 4.2 (a) Analysis of our BP optimization problem. The x-axis is a one-
dimensional arrangement of solutions: The mixed output is more salient but
not diverse towards the right and less salient but diverse on the left. The unary
term (red) decreases towards the right side of the axis, while the supermodular
term (green) increases. By optimizing the sum of the two terms (brown), we
obtain the balanced output z*. (b) A histogram of the number of inputs mixed
for each output given a batch of 100 examples from the ImageNet dataset.
As 7 increases, more inputs are used to create each output on average. (c)
Mean batch saliency measurement of a batch of mixup data using the ImageNet
dataset. We normalize the saliency measure of each input to sum up to 1. (d)
Diversity measurement of a batch of mixup data. We calculate the diversity
as 1 =3 5> 0y 6]T-6j//m, where 6; = 0;/|0j][1. We can control the diversity
among Co-Mixup data (red) and find the optimum by controlling 7.

by the pigeonhole principle. For example, suppose the first output consists of
two inputs. Then, the inputs must be used again for the remaining m’ — 1
outputs, or only m — 2 inputs can be used. In the latter case, the number of
available inputs (m — 2) is less than the outputs (m’ — 1), and thus, the same
input must be used more than twice. Empirically, we found that the remaining
compatibility term above over-penalizes the optimization so that a substantial
portion of outputs are returned as singletons without any mixup. To mitigate
the over-penalization issue, we apply clipping to the compatibility penalty term.
Specifically, we model the objective so that no extra penalty would occur when
the compatibility among outputs is below a certain level.
Now we present our main objective as following:

= argmin f(z),

ZjJCE,Cm, ’ Zjk H1:1
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where

/

m n
clzin + 8 Z Z (1-— z] wZik') (4.1)
j=1k=1 J=1 (k,k"eN
T n m'  n
+ ymax < T, Z Z <Z z;, k) (Z zj/,k> -n Z Z log p(zj k).
j=1j'#j \k=1 k=1 j=1 k=1
=fc(2)

In Figure 4.2, we describe the properties of the BP optimization problem of
Equation (4.1) and statistics of the resulting mixup data. Next, we verify the
supermodularity of the compatibility term. We first extend the definition of the
submodularity of a multi-label function as follows [211].

Definition 4. For a given label set L, a function s : L x L™ — R is pairwise
submodular, if Vx,x' € L™, s(x,x) + s(2/,2') < s(x,2’) + s(2’,x). A function
s s pairwise supermodular, if —s is pairwise submodular.

Proposition 6. The compatibility term f. in Equation (4.1) is pairwise super-
modular for every pair of (2, k, %j, k) if A is positive semi-definite.

Proof. s(x,x) + s(a’,2') — s(x,2’) — s(2,2) = 2TAx + 2TAz — 22T Az’ = (x —
2 )TA(z—2'), and because A is positive semi-definite, (z—a2')TA(z—2") > 0. O

Finally note that, A = (1 —w)l + wA,, where A. is a symmetric matrix.
By using spectral decomposition, A. can be represented as UDUT, where D is
a diagonal matrix and UTU = UUT = I. Then, A =U((1 —w)I + wD)UT, and
thus for small w > 0, we can guarantee A to be positive semi-definite.

4.4.2 Algorithm

Our main objective consists of modular (unary, prior), submodular (smooth-
ness), and supermodular (compatibility) terms. To optimize the main objective,
we employ the submodular-supermodular procedure by iteratively approximat-
ing the supermodular term as a modular function [137|. Note that z; represents
the labeling of the j* output and o; represents the aggregated input source
information of the ;' output, > r_q #j k- Before introducing our algorithm, we
first inspect the simpler case without clipping.

Proposition 7. The compatibility term f. without clipping is modular with
respect to z;.
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Proof. Note, A is a positive symmetric matrix by the definition. Then, for an
index jo, we can represent f. without clipping in terms of oj, as

m’ m’

E T .
Oj AO]/

J=1y'=1j5'#]

m/ m’ m’
=2 Z 0}A0j0+ Z Z ojTAoj/

J=1,3#j0 J=L3#j0 j'=1,5'¢{jo.j}
ml
_ N
= (2 E Aoj)Toj, + ¢
J=1,j#30
I N
= U, 050 T €

where v_j, € R™ and ¢ € R are values independent with o;,. Finally, v_TjO 0j,+C =
> k=1 VY, Zjo k + ¢ is a modular function of z;,. O

By Proposition 7, we can apply a submodular minimization algorithm to
optimize the objective with respect to z; when there is no clipping. Thus, we
can optimize the main objective without clipping in coordinate descent fashion
[214]. For the case with clipping, we modularize the supermodular compatibility
term under the following criteria:

1. The modularized function value should increase as the compatibility across
outputs increases.

2. The modularized function should not apply an extra penalty for the com-
patibility below a certain level.

Borrowing the notation from the proof in Proposition 7, for an index j,
fe(2) = max{r, v_Tjoj + ¢} = max{r — ¢, U_Tjoj} + c. Note, 0 = >_)_, zj ) repre-
sents the input source information of the j* output and v =2 Z;}lzl it Aoy
encodes the status of the other outputs. Thus, we can interpret the supermodu-
lar term as a penalization of each label of o; in proportion to the corresponding
v_; value (criterion 1), but not for the compatibility below 7 — ¢ (criterion 2).
As a modular function which satisfies the criteria above, we use the following

function:
fe(2) ®max{7’, v ;}To; for 37" € R. (4.2)

Note that, by satisfying the criteria above, the modular function reflects the
diversity and over-penalization desiderata described in Section 4.4.1. We illus-
trate the proposed mixup procedure with the modularized diversity penalty in
Figure 4.3.
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Figure 4.3 Visualization of the proposed mixup procedure. For a given batch
of input data (left), a batch of mixup data (right) is generated, which mix-
matches different salient regions among the input data while preserving the
diversity among the mixup examples. The histograms on the right represent
the input source information of each mixup data (o0;).

Proposition 8. The modularization given by Equation (4.2) satisfies the cri-
teria above.

Proof. For ji and ja, s.t., j1 # jo,

m’ m’ n n
max{r. 3 30 (S 5a A 50}
=1 j= g/ k=1 k=1

= max{r,c+2z] ; Azj, k}

_ : T

= —min{—7, —c — 2z ; Azj, 1},
for dc € R. By Lemma 1, —ij.l wA%j, 1 is pairwise submodular, and because a
budget additive function preserves submodularity [67], min{—, —0—22;1, wAzjs 1k}
is pairwise submodular with respect to (zj, k, Zj,.k)-

By applying the modular approximation described in Equation (4.2) to f. in
Equation (4.1), we can iteratively apply a submodular minimization algorithm
to obtain the final solution as described in Algorithm 3. In detail, each step can
be performed as follows: 1) Conditioning the main objective f on the current
values except zj, denoted as f;(2;) = f(25;21:j—1,Zj+1:m)- 2) Modularization
of the compatibility term of f; as Equation (4.2), resulting in a submodular
function f;. We denote the modularization operator as @, i.e., f; = ®(f;). 3)
Applying a submodular minimization algorithm to f]
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Algorithm 3 Iterative submodular minimization

Initialize z as z(9).
Let z(®) denote a solution of the ¢ step.
®: modularization operator based on Equation (4.2).
fort=1,...,T do
for j=1,...,m' do
CIES (CHE LI e}
70— w0

Solve z](t) = argmin f}t)(zj).

end for
end for

return z(1)

Analysis Narasimhan and Bilmes [137]| proposed a modularization strategy
for general supermodular set functions, and apply a submodular minimization
algorithm that can monotonically decrease the original BP objective. However,
the proposed Algorithm 3 based on Equation (4.2) is much more suitable for
minibatch based mixup for neural network training than the set modularization
proposed by Narasimhan and Bilmes [137] in terms of complexity and modular-
ization variance due to randomness. For simplicity, let us assume each z; ; is an
m-dimensional one-hot vector. Then, our problem is to optimize m'n one-hot
m-~dimensional vectors.

To apply the set modularization method, we need to assign each possible
value of z;; as an element of {1,2,...,m}. Then the supermodular term in
Equation (4.1) can be interpreted as a set function with m’nm elements, and to
apply the set modularization, O(m’nm) sequential evaluations of the supermod-
ular term are required. In contrast, Algorithm 3 calculates v_; in Equation (4.2)
in only O(m') time per each iteration. In addition, each modularization step
of the set modularization method requires a random permutation of the m’nm
elements. In this case, the optimization can be strongly affected by the ran-
domness from the permutation step. As a result, the optimal labeling of each
2k from the compatibility term is strongly influenced by the random ordering
undermining the interpretability of the algorithm.
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Dataset (Model) Vanilla Input Manifold CutMix Puzzle Mix  Co-Mixup

CIFAR-100 (PreActResNet18) 23.59 22.43 21.64 21.29 20.62 19.87
CIFAR-100 (WRN16-8) 21.70 20.08 20.55 20.14 19.24 19.15
CIFAR-100 (ResNeXt29-4-24) 21.79 21.70 22.28 21.86 21.12 19.78
Tiny-ImageNet (PreActResNet18) 43.40 43.48 40.76 43.11 36.52 35.85
ImageNet (ResNet-50) 24.03 22.97 23.30 22.92 22.49 22.39
Google commands (VGG-11) 4.84 3.91 3.67 3.76 3.70 3.54

Table 4.1 Top-1 error rate on various datasets and models. For CIFAR-100, we
train each model with three different random seeds and report the mean error.

4.5 Experiments

We evaluate our proposed mixup method on generalization, weakly supervised
object localization, calibration, and robustness tasks. First, we compare the
generalization performance of the proposed method against baselines by train-
ing classifiers on CIFAR-100 [103], Tiny-ImageNet [28], ImageNet [38], and the
Google commands speech dataset [205]. Next, we test the localization perfor-
mance of classifiers following the evaluation protocol of Qin and Kim [157]. We
also measure calibration error [56] of classifiers to verify Co-Mixup successfully
alleviates the over-confidence issue by Zhang et al. [232]. In Section 4.5.4, we
evaluate the robustness of the classifiers on the test dataset with background
corruption in response to the recent problem raised by Lee et al. [110] that deep
neural network agents often fail to generalize to unseen environments.

4.5.1 Classification

We first train PreActResNet18 [61], WRN16-8 [228], and ResNeXt29-4-24 [220]
on CIFAR-100 for 300 epochs. We use stochastic gradient descent with an initial
learning rate of 0.2 decayed by factor 0.1 at epochs 100 and 200. We set the
momentum as 0.9 and add a weight decay of 0.0001. With this setup, we train
a vanilla classifier and reproduce the mixup baselines [232, 197, 227, 91|, which
we denote as Vanilla, Input, Manifold, CutMiz, Puzzle Mix in the experiment
tables. Note that we use identical hyperparameters regarding Co-Mixup over
all of the experiments with different models and datasets.

Table 4.1 shows Co-Mixup significantly outperforms all other baselines in
Top-1 error rate. Co-Mixup achieves 19.87% in Top-1 error rate with PreActRes-
Net18, outperforming the best baseline by 0.75%. We further test Co-Mixup on
different models (WRN16-8 & ResNeXt29-4-24) and verify Co-Mixup improves
Top-1 error rate over the best performing baseline.

We further test Co-Mixup on other datasets; Tiny-ImageNet, ImageNet,
and the Google commands dataset (Table 4.1). For Tiny-ImageNet, we train
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Task Vanilla Input Manifold CutMix Puzzle Mix Co-Mixup

Localization (Acc. %) (1) 54.36  55.07  54.86 54.91 55.22 55.32
Calibration (ECE %) (1) 3.9  17.7 13.1 5.6 7.5 1.9

Table 4.2 WSOL results on ImageNet and ECE (%) measurements of CIFAR-
100 classifiers.

PreActResNet18 for 1200 epochs following the training protocol of Kim et al.
[91]. As a result, Co-Mixup consistently improves Top-1 error rate over baselines
by 0.67%. In the ImageNet experiment, we follow the experimental protocol
provided in Puzzle Mix [91], which trains ResNet-50 [60] for 100 epochs. As a
result, Co-Mixup outperforms all of the baselines in Top-1 error rate. We further
test Co-Mixup on the speech domain with the Google commands dataset and
VGG-11 [173]. From Table 4.1, we confirm that Co-Mixup is the most effective
in the speech domain as well.

4.5.2 Localization

We compare weakly supervised object localization (WSOL) performance of
classifiers trained on ImageNet (in Table 4.1) to demonstrate that our mixup
method better guides a classifier to focus on salient regions. We test the lo-
calization performance using CAM [243], a WSOL method using a pre-trained
classifier. We evaluate localization performance following the evaluation proto-
col in Qin and Kim [157], with binarization threshold 0.25 in CAM. Table 4.2
summarizes the WSOL performance of various mixup methods, which shows
that our proposed mixup method outperforms other baselines.

4.5.3 Calibration

We evaluate the expected calibration error (ECE) [56] of classifiers trained
on CIFAR-100. Note, ECE is calculated by the weighted average of the abso-
lute difference between the confidence and accuracy of a classifier. As shown
in Table 4.2, the Co-Mixup classifier has the lowest calibration error among
baselines. From Figure 4.4, we find that other mixup baselines tend to have
under-confident predictions resulting in higher ECE values even than Vanilla
network (also pointed out by Wen et al. [209]), whereas Co-Mixup has best-
calibrated predictions resulting in relatively 48% less ECE value.
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Figure 4.4 Confidence-Accuracy plots for classifiers on CIFAR-100. From the fig-
ure, the Vanilla network shows over-confident predictions, whereas other mixup
baselines tend to have under-confident predictions. We can find that Co-Mixup
has best-calibrated predictions.

Corruption type Vanilla Input Manifold CutMix Puzzle Mix Co-Mixup

Random replacement 41.63 39.41 39.72 46.20 39.23 38.77
(+17.62) (+16.47) (4+16.47) (+23.16) (+16.69) (4+16.38)

Gaussian noise 29.22 26.29 26.79 27.13 26.11 25.89

(+5.21)  (+3.35)  (4+3.54)  (+4.09) (+3.57) (+3.49)

Table 4.3 Top-1 error rates of various mixup methods for background corrupted
ImageNet validation set. The values in the parentheses indicate the error rate
increment by corrupted inputs compared to clean inputs.

4.5.4 Robustness

In response to the recent problem raised by Lee et al. [110] that deep neural
network agents often fail to generalize to unseen environments, we consider
the situation where the statistics of the foreground object, such as color or
shape, is unchanged, but with the corrupted (or replaced) background. In detail,
we consider the following operations: 1) replacement with another image and
2) adding Gaussian noise. We use ground-truth bounding boxes to separate
the foreground from the background, and then apply the previous operations
independently to obtain test datasets.

With the test datasets described above, we evaluate the robustness of the
pre-trained classifiers. As shown in Table 4.3, Co-Mixup shows significant per-
formance gains at various background corruption tests compared to the other
mixup baselines. For each corruption case, the classifier trained with Co-Mixup
outperforms the others in Top-1 error rate with the performance margins of
2.86% and 3.33% over the Vanilla model.
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# inputs for mixup Input Manifold CutMix ‘ Co-Mixup

# inputs = 2 22.43 21.64 21.29
# inputs = 3 23.03 22.13 22.01 19.87
# inputs =4 23.12 22.07 22.20

Table 4.4 Top-1 error rates of mixup baselines with multiple mixing inputs on
CIFAR-100 and PreActResNet18. We report the mean values of three different
random seeds. Note that Co-Mixup optimally determines the number of inputs
for each output by solving the optimization problem.

4.5.5 Baselines with multiple inputs

To further investigate the effect of the number of inputs for the mixup in isola-
tion, we conduct an ablation study on baselines using multiple mixing inputs.
For fair comparison, we use Dirichlet(a, ..., «) prior for the mixing ratio distri-
bution and select the best performing « in {0.2,1.0,2.0}. Note that we overlay
multiple boxes in the case of CutMix. Table 4.4 reports the classification test er-
rors on CIFAR-100 with PreActResNet18. From the table, we find that mixing
multiple inputs decreases the performance gains of each mixup baseline. These
results demonstrate that mixing multiple inputs could lead to possible degra-
dation of the performance and support the necessity of considering saliency
information and diversity as in Co-Mixup.

4.6 Conclusion

We presented Co-Mixup for optimal construction of a batch of mixup exam-
ples by finding the best combination of salient regions among a collection of
input data while encouraging diversity among the generated mixup examples.
This leads to a discrete optimization problem minimizing a novel submodular-
supermodular objective. In this respect, we present a practical modular ap-
proximation and iterative submodular optimization algorithm suitable for mini-
batch based neural network training. Our experiments on generalization, weakly
supervised object localization, and robustness against background corruption
show Co-Mixup achieves the state of the art performance compared to other
mixup baseline methods. The proposed generalized mixup framework tackles
the important question of ‘what to mix?’ while the existing methods only con-
sider ‘how to mix?’. We believe this work can be applied to new applications
where the existing mixup methods have not been applied, such as multi-label
classification, multi-object detection, or source separation.
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Chapter 5

Neural Relation Graph: A Unified
Framework for Identifying Label
Noise and Outlier Data

5.1 Introduction

Identifying problems within datasets is crucial for improving the robustness of
machine learning systems and analyzing the model failures [172]. For instance,
identifying mislabeled or uninformative data helps construct concise and ef-
fective training datasets [139], while identifying whether test data is OOD or
corrupted allows for more accurate model evaluation and analysis [195].

In recent years, efforts have been made to identify problematic data by
utilizing unary scores on individual data from trained models, such as estimat-
ing data influence [100], monitoring prediction variability throughout training
[191], and calculating prediction error margins [140]. However, identifying such
data can be challenging, particularly when dealing with large-scale datasets
from real-world distributions. In real-world settings, datasets may have com-
plex problems, including label errors, under-representation, and outliers, each of
which can lead to the model error and prediction sensitivity [101]. For example,
Figure 5.1 shows that a neural network exhibits low negative prediction margins
and high loss values for both a sample with label error and outlier data. This
observation indicates that previous unary scoring methods may have limitations
in discerning whether the problem lies with the label or the data itself.
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Figure 5.1 ImageNet samples with their labels and the corresponding relation
maps by an MAE-Large model [62]. We report the prediction margin score
(€ [-1,1]) and the loss value next to the label. The relation map draws a scatter
plot of the mean and variance of relation values of a data pair throughout
the training process. Here the color represents the relation value at the last
converged checkpoint. We present the detailed procedure for generating the
relation maps in Section 5.3.6.
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Figure 5.2 The conceptual illustration of the conventional approaches (left)
and our proposed approach (right). In the relation graph, positive edges sig-
nify complementary relations, negative edges denote conflicting relations, and
dashed lines indicate negligible relations between data.

In this work, we propose a unified framework for identifying label errors
and outliers by leveraging the feature-embedded structure of a dataset that
provides richer information than individual data alone [178, 146]. We measure
the relationship among data in the feature embedding space while comparing
the assigned labels independently. By comparing input data and labels sepa-
rately, we are able to isolate the factors contributing to model errors, resulting
in improved identification of label errors and outlier data, respectively. Based on
the relational information, we construct a novel graph structure on the dataset
and identify whether the data itself or the label is problematic (Figure 5.2). To
this end, we develop scalable graph algorithms that accurately identify label
errors and outlier data points.

In Section 5.3.6, we further introduce a visualization tool named data rela-
tion map that captures the relational structure of a data point. Through the
map, we can understand the underlying relational structure and interactively
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diagnose data. In Figure 5.1, we observe different patterns in the relation maps
of the second and third samples, despite their similar margin and loss scores.
This highlights that the relational structure provides complementary informa-
tion not captured by the unary scoring methods.

Our approach only requires the model’s feature embedding and prediction
score on data, making it more scalable compared to methods that require cal-
culating the network gradient on each data point or retraining models multiple
times to estimate data influence [155, 75|. Furthermore, our method is domain-
and model-agnostic, and thus is applicable to various tasks. We evaluate our ap-
proach on label error and outlier/OOD detection tasks with large-scale image,
speech, and language datasets: ImageNet [38], ESC-50 [152], and SST2 [199].
Our experiments show state-of-the-art performance on all tasks, demonstrating
its effectiveness for debugging and cleaning datasets over various domains.

5.2 Related work

Label error detection. Label errors in datasets can negatively impact model
generalization and destabilize evaluation systems |71, 140|. Prior works ad-
dress this issue through label error detection using bagging and bootstrapping
[175, 164], or employing neural networks [80, 49, 86|. To mitigate overfitting on
label errors, Pleiss et al. [153] propose tracking the training process to measure
the area under the margin curve. Recent studies demonstrate that simple scor-
ing methods with large pre-trained models, such as prediction margins or loss
values, achieve comparable results to previous complex approaches [139, 27].
Meanwhile, Wu et al. [216] propose a unified approach for learning with open-
world noisy data. However, the method involves a complicated optimization
process during training, which is not suitable for large-scale settings. Another
line of approach to identifying label errors involves measuring the influence of
a training data point on its own loss [100, 155]. However, these approaches
require calculating computationally expensive network gradients on each data
point, and their performance is known to be sensitive to outliers and training
schemes [8, 9]. In this work, we present a scalable approach that leverages the
data relational structure of trained models without additional training proce-
dures, facilitating practical analysis of label issues.

Outlier/OOD detection. Detecting outlier data is crucial for building ro-
bust machine learning systems in real-world environments [101]|. A recent sur-
vey paper defines the problem of finding outliers in training set as outlier de-
tection and finding outliers in the inference process as OOD detection [223].
The conventional approach for detecting outliers involves measuring k-nearest
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distance using efficient sampling methods [182]. More recently, attempts have
been made to detect outlier data using scores obtained from trained neural
networks, such as Maximum Softmax Probability [64], Energy score [119], and
Max Logit score [66]. Other approaches suggest adding perturbations on the
inputs or rectifying the activation values to identify the outlier data [116, 183|.
Lee et al. [109] propose fitting a Gaussian probabilistic model to estimate the
data distribution. Recently, Sun et al. [184] propose a non-parametric approach
measuring the k-nearest feature distance. In our work, we explore the use of
the relational structure on the feature-embedded space for identifying outlier
data. Our approach is applicable to a wide range of domains without requiring
additional training while outperforming existing scoring methods on large-scale
outlier/OOD detection benchmarks.

5.3 Methods

In this section, we describe our method for identifying label errors and outliers
using a model trained on the noisy training dataset. We exploit the feature-
embedded structure of the learned neural networks, which are known to ef-
fectively capture the underlying semantics of the data [162]. We define data
relation to construct a data relation graph on the feature space, and introduce
our novel graph algorithms for identifying label errors and outlier data. In Sec-
tion 5.3.6, we introduce the data relation map as an effective visualization tool
for diagnosing and contextualizing data.

5.3.1 Data relation

We describe our approach in the context of a classification task, while also
noting that the ideas are generalizable to other types of tasks as well. We as-
sume the presence of a trained neural network on a noisy training dataset with
label errors and outliers, 7 = {(x;,y;) | ¢« = 1,...,n}. By utilizing data fea-
tures extracted from the network, we measure the semantic similarity between
data points with a bounded kernel k : X x X — [0, M], where a higher ker-
nel value indicates greater similarity between data points. Our framework can
accommodate various bounded kernels such as RBF kernel or cosine similarity
[226]. We provide detailed information on the kernel function used in our main
experiments in Section 5.3.4.

By incorporating the assigned label information with the similarity kernel
k, we define the relation function r: X x Y x X x Y — [-M, M]:

(i, vi), (25, 95)) = Ly = y5) - k(x4 25), (5.1)
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Figure 5.3 Relation values of samples from ImageNet with MAE-Large [62]. We
denote the assigned label above each sample. Here, the center image has a label
€rTor.

where 1(y; = y;) € {—1,1} is a signed indicator value. The relation function
reflects the degree to which data samples are complementary or conflicting
with each other. In Figure 5.3, the center image with a label error has negative
relations to the left samples that belong to the same ground-truth class. In
contrast, the two left samples with correct labels have a positive relation. We
also note that samples with dissimilar semantics exhibit near-zero relations.

Our relation function r relies solely on the parallelizable forward computa-
tion of neural networks, ensuring scalability in large-scale settings.

5.3.2 Label error detection

We consider a fully-connected undirected graph G = (V,E, W), where the set
of nodes V corresponds to 7 and the weights W on edges £ are the negative
relation values defined in Equation (5.1). For notation clarity, we denote a data
point by an index, i.e., T = {1,...,n}. Then, for nodes i and j, the edge weight
is w(i,j) = —r(i,j) = —r((xi, vi), (x5,y;)). We set w(i,7) to 0, which does not
correspond to any edges in the graph. Consistent with previous works [139], we
aim to measure the label noisiness score for each data, where a higher score
indicates a higher likelihood of label error. We denote the label noisiness scores
for T as s € R™, where s[i] is the score for data i.

As depicted in Figure 5.3, data with label errors exhibit negative relations
with other samples, implying that the data have similar features in the em-
bedding space yet have dissimilarly assigned labels. This suggests that the edge
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Figure 5.4 Ilustration of our scoring algorithms for identifying label noise (left)
and outliers (right).

weights w(i, -) quantify the extent to which the label assigned to node i conflicts
with the labels of other nodes. However, simply aggregating all edge weights of
a node can yield suboptimal results, as negative relations can also contribute
to the score for clean data, as shown in Figure 5.3.

To rectify this issue, we develop an algorithm that considers the global struc-
ture of the graph instead of simply summing the edge weights of individual
nodes. Specifically, we identify subsets of data likely to have correct/incorrect
labels and calculate the label noisiness score based on the subsets. We partition
the nodes in 7 into two groups, where N' C T denotes the estimated noisy
subset and T\N denotes the clean subset. To optimize N/, we aim to maximize
the sum of the edges between the two groups, indicating that the label infor-
mation of the two groups is the most conflicting. To ensure that N contains
data with incorrect labels, which constitute a relatively small proportion of 7,
we impose regularization to the cardinality of N” with A > 0 and formulate the
following max-cut problem:

N* = argmax cut(N,T\N) ( = w(i, j)) — AN (5.2)
NCT ( iGZ/\/je;\N )

The max-cut problem is NP-complete [58|. To solve this problem, we adopt
the Kerninghan-Lin algorithm, which finds a local optimum by iteratively up-
dating the solution [89]. However, the original algorithm that swaps data one
by one at each optimization iteration is not suitable for large-scale settings.
To this end, we propose an efficient set-level algorithm in Algorithm 4 that
alternatively updates the noisy set N and label noisiness score vector s.

Specifically, given the current estimation of A/, the cut value excluding edges
of node i € T is cut(N\{i}, T\N\{i}). Algorithm 4 measures the label noisiness
score of node ¢ by comparing the objective cut values when including i in A
and when including i in 7T\N:
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Algorithm 4 Label noise identification

Input: Relation function r (= —w)
Notation: The number of data n
for i =1ton do
sli] = Z?zl w(i,j) # caching initial score
end for
s=3s
repeat
N ={i|s[i]]>Niell,...,n]}
fori=1tondo
sli] < s[i] — QZjEN w(i, j)
end for
until convergence
Output: s, N

sli] = cut(NU{i}, T\N\{i}) — cut(NM\{i}, T\NU{i}) = Z w(i, j) — Z w(i, ).

JET\N JEN

Here we use the assumption w(i,7) = 0. In practice, the cardinality of N is
small, so we can efficiently update the score vector s by caching the initial score
vector 5 as in Algorithm 4. After calculating the score vector s, we update the
noisy set N by selecting nodes with score values above the value \. Figure 5.4
illustrates the optimization process. Here larger values of A result in smaller A/
consisting of data samples that are more likely to have label noise.

Algorithm 4 satisfies the convergence property in Proposition 9.

Proposition 9. Algorithm 4 with a single node update at each iteration con-
verges to local optimum.

Proof. The change in the objective value of Equation (5.2) by moving data ¢
from T\N to N is

> wliyg) =Y wli,g) = A (5.3)

JET\W JEN
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where the change by moving data i from A to T\N is

S wlig) = Y wlig)+ A

JEN JET\WNV

Note the score s in Algorithm 4 is

jET JEN JjET\WNV JEN

Thus the change in the objective value by moving data ¢ to another partition
is s[i] — X\ for i € T\N and —s[i] + A for ¢ € N, which can be represented as
v[i](s[i] — A). Therefore, moving a sample with a positive value of v[i](s[i] — \)
to another partition guarantees an increase in the objective function value.
Because a cut value in a graph is bounded, the algorithm converges to the local
optimum by the monotone convergence theorem. O

Complexity analysis. The time complexity of Algorithm 4 is O(n?), pro-
portional to the number of edges in a graph. It is noteworthy that our method
maintains the best performance when used with graphs consisting of a small
number of nodes, as shown in Figure 5.5. This implies that we can partition
large datasets and run the algorithm repeatedly for each partition to enhance
efficiency while maintaining performance. In this case, the complexity becomes
O(n/k - k*) = O(nk), with k representing the size of each partition and n/k
being the number of partitions. Also, computations on these partitions are
embarrassingly parallelizable, meaning that the complexity becomes O(k?) for
k < n in distributed computing environments.

5.3.3 Outlier/OOD detection

In the previous section, we presented a method for detecting label errors based
on data relations with similar feature embeddings but different label informa-
tion. By employing the identical feature embedding structure, we identify outlier
data by measuring the extent to which similar data are absent in the feature
embedding space. To quantify the extent of a data point being an outlier, we
aggregate the similarity kernel values of a data point in Equation (5.4), thereby
processing the entire relational information of the data point. Our approach
leverages global information about the data distribution, resulting in a more
robust performance across a range of experimental settings compared to ex-
isting methods that rely on local information such as k-nearest distance [184].
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Specifically, for a subset S C T and data z, we measure the outlier score as

1
ZiES k‘((L‘, xl) '

Higher values in the outlier score indicate that the data are more distribu-
tionally outliers. We propose to use a uniform random sampling for S, adjusting
the computational cost and memory requirements for the outlier score calcula-
tion to suit the inference environment. In Section 5.4.3, we verify our method
maintains the best OOD detection performance even when using only 0.4% of
the data in ImageNet.

outlier(x) =

5.3.4 Proposed similarity kernel

For x; € X, we extract the feature representation f; and the prediction proba-
bility vector p; from the trained model. We propose a class of bounded kernel
k:X x X — [0, M] with the following form:

k($i7$j) = |3(fi’fj) : C(pi,pj)|t' (5'4)

A positive scalar value t controls the sharpness of the kernel value distribution.
A larger value of ¢ makes a small kernel value smaller, which is effective in
handling small noisy kernel values. A scalar value s(f;, f;) € RT denotes a sim-
ilarity measurement between features. In our main experiments, we adopt the
truncated cosine-similarity that has been widely used in representation learning
[170, 165]. We use the hinge function at zero, resulting in the following positive
feature-similarity function:

s(f;, f;) = max(0, cos(f;, f})).

It is worth noting the utility of our framework is not limited to a specific kernel
design. In Section 5.4.4, we verify our approach maintains the best performance
with s(f;, f;) defined as the RBF kernel [226].

While the feature similarity captures the meaningful semantic relationship
between data points, we observe that considering the prediction scores p; can
further improve the identification of problematic data. To incorporate prediction
scores into our approach, we introduce a scalar term c(p;, p;) that measures the
compatibility between the predictions on data points. Any positive and bounded
compatibility function is suitable for the kernel class defined in Equation (5.4).
In our main experiments, we use the predicted probability of belonging to the
same class as the compatibility term c(p;, p;j). Specifically, given the predicted
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label random variables #; and 7;, the proposed compatibility term is

c(pi, pj) = P(4i = 7j) = P, p;- (5.5)

From a different perspective, we interpret this term as a measure of confidence
for feature similarity. In Section 5.4.4, we verify the effectiveness of the com-
patibility term through an ablation study.

Interpretation. We establish an understanding of our relation function in
Equation (5.1) by drawing a connection to the influence function [155]. For
simplicity, we consider the influence function with a single checkpoint, where
the influence between data x; and z; is given by Vi ¢(x;)TV,¢(z;). Here, ¢
denotes the loss function, and w denotes the weight of the checkpoint. We
consider the influence function at the feed-forward layer, where ¢(x;) = h(f]) =
h(wTf;), following the convention [155|. By the chain rule, we can decompose
the weight gradient as V,0(z;) = Veh(f))f], and represent the influence as

7 )

Ve h(£])TVeh(f]) - f7£;. In contrast, our relation function has a form of 1(y; =
y;) - Is(fi,£5) - e(pi, pj)["-

The main distinction between our relation function and the influence func-
tion is the existence of the feature gradient term Vg h(f]). As observed in Bar-
shan et al. [8], outliers have a large feature-gradient norm, leading to difficulties
in detecting label errors. Specifically, let us consider the weight w at the clas-
sifier layer, where the function A is the softmax cross-entropy loss function. As
Pruthi et al. [155], we can express the feature gradient inner-product as

Ve h(£))Veh(£)) = (yvi — pi)T(v; — Pj),

where y; denote the one-hot label. The equation above shows that the correctly
classified data with y; =~ p; yields near zero inner-product values, whereas
outliers with high entropy predictions exhibit large inner-product values. Con-
sequently, existing influence-based label error detection methods, which detect
label errors by identifying data with high influence values, have degraded per-
formance in the presence of outliers [§].

Our relation function differs from influence functions in that it separates
label and prediction information using a label comparison term 1(y; = y;)
and a compatibility term c(p;, p;), respectively. Outlier data typically have a
high entropy of model predictions, resulting in lower compatibility values with
other data [64]. On the other hand, normal data with label errors exhibit high
compatibility values with other normal data. Our detection algorithms exploit
these differences and achieve improved detection performance compared to the
influence functions.
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Model | Feature  Algorithm 4 | Gradient

MAE-Base 2300 400 6000
MAE-Large 6900 420 21000

Table 5.1 Time spent (s) for label error detection on ImageNet 1.2M dataset.
Feature indicates the total computing time for calculating feature embeddings
of all data points, and Gradient means the total computing time for calculating
network gradient on each data point. Algorithm 1 indicates the time spent by
our algorithm, excluding feature calculation.

Model ‘ Unary Relation
MAE-Large | 12.2 12.3
ResNet-50 8.1 8.2

Table 5.2 Time spent per sample (ms) for OOD detection on ImageNet with
various models. Unary refers to unary scoring methods utilizing logit or prob-
ability score for each data point.

5.3.5 Computation time analysis

In this section, we measure the time spent on detection algorithms. We use
1 RTX3090-Ti GPU and conduct experiments on the full ImageNet training
set. Table 5.1 compares computation time for Algorithm 4 and feature calcu-
lation. Note that all existing methods using neural networks require at least
the computation of data features f;. Table 5.1 shows that Algorithm 4 (ex-
cluding feature calculation) requires significantly less computation time than
the feature calculation. We also observe that our algorithm efficiently scales
up to large neural networks, MAE-Large, which have a larger number of fea-
ture embedding dimensions than the base model. It is also worth noting that
computing the network gradient takes a much longer time, demonstrating the
efficiency of our algorithm in large-scale label error detection compared to the
existing methods.

In Table 5.2, we measure the time spent for OOD detection on the full Ima-
geNet training set. The computation of our similarity kernel is embarrassingly
parallelizable on GPUs. As shown in the table, the overhead time for comput-
ing our outlier scores is negligible compared to the time spent for the neural
networks’ forward computation on a single data point. We can further reduce
the time and memory requirements by measuring the outlier score on a subset
of the training set (Figure 5.7).
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5.3.6 Data relation map

In this section, we present a visualization method based on our data relation
function to contextualize data and comprehend its relational structure. One of
the effective approaches for visualizing a dataset is dataset cartography [185],
which projects the dataset onto a 2D plot. This approach draws a scatter plot of
the mean and standard deviation of the model’s prediction probabilities for each
data sample during training. Inspired by the dataset cartography, we propose
a data relation map, which visualizes the relationship between data along the
training process. To this end, we uniformly store checkpoints during training.
We denote a set of these checkpoints as K, where r; refers to the relation
function for checkpoint k € K. For each data sample i € T, we draw a scatter
plot of the mean and standard deviation of relation values {ry(i, ) | k € K} for
J e T\{i}.

In Figure 5.1, we provide relation maps of three samples from ImageNet,
using 10 checkpoints of MAE-Large [62]. The three samples each represent clean
data, data with a label error, and outlier data. From the figure, samples show
different relation map patterns. Specifically, the relation map of a clean data
sample exhibits a majority of positive relations with relatively small variabil-
ity. We note that there are gray-colored relations in high variability regions
(0.2<std), indicating that the model resolves conflicting relations at conver-
gence. On the other hand, the relation map of the sample with a label error
demonstrates a majority of negative relations. Notably, high variance relations
result in largely negative relations at convergence, suggesting that conflicts in-
tensify. Lastly, the relation map of the outlier data sample reveals that relations
are close to 0 during training. These relation maps can serve as a model-based
fingerprint of the data, which our algorithm effectively exploits to identify prob-
lematic data.

5.4 Experimental results

In this section, we experimentally verify the effectiveness of our approach in
detecting label errors and outliers.

5.4.1 Setting

Datasets. We conduct label error detection experiments on large-scale datasets:
ImageNet [38], ESC-50 [152], and SST2 [199]. ImageNet consists of about 1.2M
image data from 1,000 classes. ESC-50 consists of 2,000 5-second environmen-
tal audio recordings organized into 50 classes. SST2 is a binary text sentiment
classification dataset, consisting of 67k movie review sentences.
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Label Noise Ratio | 0. 0.04 0.08 012 0.15
Top-1 Accuracy | 85.89 84.96 84.15 82.88 81.50

Table 5.3 Validation top-1 accuracy of MAE-Large trained on ImageNet with
noisy labels.

Following Pruthi et al. [155], we construct a noisy training set by flipping
labels of certain percentages of correctly classified training data with the top-2
prediction of the trained model. We use different neural network architectures
for constructing a noisy training set and detecting label errors to avoid possible
correlation. In Table 5.3, we provide the top-1 validation accuracy of MAE-
Large trained on training sets with noisy labels, demonstrating the importance
of label noise detection and cleaning.

Baselines. We compare our method (Relation) to six baselines that are suit-
able for large-scale datasets. We consider fine-tuned loss from pre-trained mod-
els (Loss) |27], prediction probability margin score (Margin) [139], and the
influence-based approach called TracIn [155]. We also evaluate model-agnostic
scoring methods: Entropy, Least-confidence, and Confidence-weighted Entropy
(CWE) [105]. For a fair comparison, we evaluate methods using a single con-
verged neural network in our main experiments, while also providing results
with a temporal ensemble suggested by [155] in Table 5.5.

Metric. We evaluate the detection performance based on label reliability
scores by each method. We note that detecting label errors is an imbalanced de-
tection problem, which makes the AUROC metric prone to being optimistic and
misleading [37]. In this respect, we mainly report the AP (average precision)
and TNR95 (TNR at 0.95 TPR).

5.4.2 Label error detection

ImageNet. We measure the label error detection performance on ImageNet
with the synthetic label noise by training an MAE-Large model [62]. Note that
the model does not have access to information about the changed clean labels
during the entire training process. Figure 5.5 (a) shows the detection perfor-
mance over a wide range of label noise ratios from 4% to 15%. As shown in the
figure, our approach achieves the best AP and TNR95 performance compared
to the baselines. Especially, our method maintains a high TNR95 over a wide
range of noise ratios, indicating that the number of data that need to be re-
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Figure 5.5 Label error detection performance on ImageNet with MAE-Large
according to (a) label noise ratios and (b) the number of data. We obtain the
results in (b) with 8% label noise.

viewed by human annotators is significantly smaller when cleaning the dataset.
In Figure 5.10, we present detected label error samples by our algorithm.

It is worth noting that our method relies on the number of data for con-
structing a relation graph. To measure the sensitivity of our algorithm to the
number of data, we evaluate the detection performance using a reduced number
of data with uniform random sampling. Figure 5.5 (b) shows the detection per-
formance on 8% label noise with MAE-Large. From the figure, we find that our
algorithm maintains the best detection performance even with 1% of the data
(12k). This demonstrates that our algorithm is effective even when only a small
portion of the training data is available, such as continual learning or federated
learning [145, 131]. In Table 5.4 (a), we provide detection performance for dif-
ferent scales of MAE models on 8% label noise. The table shows our approach
achieves the best AP with MAE-Base, verifying the robustness of our approach
to the network scales. From the table, we note that larger models are more
robust to label noise and show better detection performance.

Speech and language domains. We apply our method to speech and lan-
guage domain datasets: ESC-50 [152] and SST2 [199]. We design the label noise
detection settings identical to the previous ImageNet section. Specifically, we
train the AST model [50] for ESC-50 and the RoBERTa-Base model [120] for
SST2 under the 10% label noise setting. Table 5.4 (b) shows our approach
achieves the best AP and TNR95 on the speech and language datasets, demon-
strating the generality of our approach across various data types.

Realistic label noise. The ImageNet validation set is known to contain nu-
merous label errors [140]. To tackle this issue, Beyer et al. [11] cleaned the labels
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(a) Model architecture scales (b) Speech/language domains (c) Realistic label noise

Scale Metric ‘ Baseline Relation Dataset Metric ‘ Baseline Relation Model ‘ Baseline Relation
Base AP 0.477 0.514 ESC50 AP 0.739 0.779 MAE 0.708 0.733

" TNR95 | 0488  0.672 " INR95 | 0793 0.847  BE[T 0719  0.737
L AP 0.484  0.526 ssTo AP 0.861  0.881 ConvNeXt 0.713  0.735
AT TNR95 | 0521  0.695 TNR95 | 0.850 0.870  ConvNeXt-22k | 0.724  0.744

Table 5.4 Label error detection performance on ImageNet with 8% label noise.
Baseline refers to the best performance among the six baselines considered in
Figure 5.5. In Table (c), the evaluation metric is AP.
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Figure 5.6 Label error detection performance of relation graph throughout the
MAE-Large training process on ImageNet with 8% label noise.

with human experts and corrected around 29% of the labels via multi-labeling.
With this re-labeled validation set, we conduct experiments under the realistic
label noise, with the task of detecting the data samples with changed labels.
We measure the detection performance with MAE-Large [62], BEIT-Large [7],
and ConvNeXt-Large [121] models. To examine the impact of pre-training on
external data, we also include ConvNeXt pre-trained on ImageNet-22k, denoted
as ConvNeXt-22k. We construct the relation graph using only the validation
set, considering scenarios where the training data are not available. Table 5.4
(c¢) verifies that our approach outperforms the best baseline across various mod-
els. The results on ConvNeXt-22k indicate that pre-training on external data
improves the detection performance.

Memorization issue. We investigate the impact of large neural networks’
ability to memorize label errors on detection performance [231]. In the left figure
of Figure 5.6, we find that the AP score decreases as the training progresses after
30 epochs with MAE-Large which converges at 50 epochs. From the precision-
recall curves in Figure 5.6, we observe that precision increases at low recall
area but decreases at mid-level recall (~ 0.5) as the training progresses. This
suggests that training has both positive and negative effects on detecting label
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Entropy Least-conf. CWE Loss Tracln Margin ‘ Relation
0.246 (0.007) 0.282 (0.001) 0.397 (0.031) 0.465 (0.041) 0.449 (0.034) 0.544 (0.06) ‘ 0.562 (0.036)

Table 5.5 Label error detection AP with the temporal model ensemble on Ima-
geNet with 8% label noise (MAE-Large). In parenthesis, we denote the perfor-
mance gain compared to the detection by a single converged model.

noise, and we speculate that memorization is one cause.

Leveraging these observations, we measure the label error detection perfor-
mance by using the temporal model ensemble [155]. Specifically, we average the
label reliability scores from 4 checkpoints that are uniformly sampled through-
out training. Table 5.5 shows that this technique improves the performance of
all methods, with our approach still exhibiting the best performance. These re-
sults confirm the effectiveness of temporal ensembles when more computation
and storage are available.

5.4.3 Outlier/OOD detection

Baselines. We consider the following representative outlier scoring approaches:
Maximum Softmax Probability (MSP) [64], Max Logit [66], Mahalanobis [109],

Energy score [119|, ReAct [183|, KL-Matching |66, and KNN [184]. We tune

the KNN method’s hyperparameter k£ based on the paper’s guidance as k =

1000 x «, where « represents the ratio of training data used for OOD detec-

tion. We also evaluate outlier detection approaches, Iterative sampling [182] and

Local outlier factor |204].

OOD detection. Following Sun et al. [184], we evaluate OOD detection per-
formance on the ImageNet validation set consisting of 50k in-distribution data
samples, along with four distinct OOD datasets: Places [244], SUN [219], iNatu-
ralist [194], and Textures [29]. Each of these OOD datasets consists of 10k data
samples except for Textures which has 5,640 data samples. We also combine
these four datasets, denoted as ALL, and measure the overall OOD detection
performance on this dataset.

Figure 5.7 shows OOD detection performance of MAE-Large on ALL outlier
dataset. Our approach and KNN both rely on the number of training data
samples (|S|) for outlier score calculation. We examine the effect of training set
size by measuring the performance with a reduced number of data using uniform
random sampling. Figure 5.7 verifies that our approach outperforms baselines
while maintaining performance even with 0.4% of the training dataset (5k).
Note that KNN requires hyperparameter tuning according to the training set
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Figure 5.7 OOD detection performance on ImageNet (ALL) with MAE-Large.
Unary-best means the best performance among the methods that do not rely
on the training data for outlier score calculation.
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Figure 5.8 OOD detection performance on individual ImageNet OOD datasets
with MAE-Large. Baseline-best refers to the best performance among the nine
baselines.

size, whereas our approach uses the identical hyperparameter (¢ = 1) regardless
of the size. Figure 5.8 shows performance on four individual OOD datasets.

Outlier detection. We perform outlier detection experiments following the
methodology by Wang et al. [204], where the training set contains outlier data
with random labels. We construct the noisy ImageNet-100 training sets by using
SUN [219] datasets. We train a ViT-Base model [41] from scratch on these noisy
training datasets, and measure outlier detection performance using the trained
model.

Table 5.6 shows the outlier detection results on two outlier datasets. As
indicated, our method achieves the best performance in the outlier setting,
demonstrating its effectiveness in outlier detection. It is worth noting that the
considered OOD scoring methods (MSP, Max Logit, Energy) do not achieve
good outlier detection performance. We speculate that this is due to the over-
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Method | AUROC AP TNR95

MSP 0.708 0.335 0.032
Max Logit 0.499 0.216 0.011
Energy 0.417 0.106 0.010
KNN 0.990 0.899 0.960

Iterative sampling 0.973 0.687 0.903
Local outlier factor 0.986 0.850 0.941

Relation (Ours) | 0.993  0.906 0.971

Table 5.6 Outlier detection performance with Vit-Base on noisy ImageNet-100
with SUN. Some OOD scoring methods (Mahalanobis, ReAct, KL-Matching)
are excluded from the comparison because they require a clean training dataset
which is not available in the outlier detection setup.
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Figure 5.9 The detection AP of MAE-Large across a range of kernel tempera-
tures t. The dashed blue line means the best baseline performance.

fitting of the neural network’s predictions on outliers.

Detecting outliers in validation set. We further utilize our method for
identifying outliers in the validation set by retrieving data samples with the
highest outlier score (Section 5.3.3). In Figure 5.11, we present samples detected
by our algorithm from ImageNet and SST2. In the figure, we observe that these
samples are not suitable for measuring the predictive performance on labels,
which should be excluded from the evaluation dataset.

5.4.4 Ablation study

Temperature t. In Equation (5.4), we introduced a temperature ¢, where a
large value of ¢ increases the influence of large relation values in our algorithm.
We conduct sensitivity analysis on ¢ with MAE-Large on ImageNet under 8%
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Metric ‘Baseline ‘ RBF Cos RBF-¢ Cos-c

AP 0.484 0.470 0.471  0.525 0.526
TNR95 0.521 0.668 0.671  0.703 0.695

Table 5.7 Comparison of similarity kernel designs. Baseline represents the best
baseline performance. The term ¢ denotes our compatibility term in Equa-
tion (5.5). Note, Cos - ¢ is the kernel function considered in our main experi-
ments, and RBF / Cos refers to our method without the compatibility term c.

label noise. Figure 5.9 shows the effect of the temperature value on our detection
algorithm’s performance. From the figure, we observe that the label error detec-
tion performance increases as the ¢ value increases, saturating at t = 6. In the
case of OOD detection, we achieve the best performance at around ¢ = 1. Our
algorithm outperforms the best baseline over a wide range of hyperparameters,
demonstrating the robustness of our algorithm to the hyperparameter.

Similarity kernel design. We present an empirical analysis of the kernel de-
sign choices. Specifically, we replace the cosine similarity term in Equation (5.4)
as the RBF kernel and evaluate the detection performance. We further conduct
an ablation study on compatibility terms (Equation (5.5)). Table 5.7 summa-
rizes the label error detection performance with different kernel functions on
ImageNet with 8% noise ratio. The table shows that our approach largely out-
performs the best baseline even with the RBF kernel. Also, we find that our
approach without the compatibility term shows comparable AP performance
while significantly outperforming baselines in TNR95. These results demon-
strate the generality and utility of our relational structure-based framework,
which is not limited to a specific kernel design.

5.5 Additional discussions

Why does relation graph work? We discuss the conceptual differences
between our relation graph-based approach and previous baselines. Firstly, our
method is data-centric, whereas the previous approaches rely on a unary score
by models. Our approach identifies problematic data by comparing them to
other data, which leads to more reliable identification of problematic data than
unary scoring methods that are vulnerable to overfitting [153]. Secondly, our
approach aggregates global relational information, whereas previous methods
rely on local information such as k-nearest distance [184]. Considering all edge
connections, our method obtains more representative information about the
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Figure 5.10 Detected data samples with label errors (marked in red) from Ima-
geNet (top) and SST2 (bottom). We present samples with conflicting relations
next to the detected samples and denote the corresponding relation value in
parenthesis.
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Figure 5.11 Data samples with the highest outlier scores by our method on
ImageNet (top) and SST2 (bottom) validation sets. We denote the assigned
labels above each data sample.

data distribution. Through temperature parameter ¢ and efficient graph algo-
rithms, we effectively process the entire relations and achieve the improved
identification of problematic data.

Limitations and future works. There are several promising future direc-
tions for our work. Firstly, the current experiments are limited to the classifi-
cation task, and it would be valuable to apply our approach to a wider range of
tasks, such as segmentation or generative models. These tasks may introduce
new and interesting categories of problematic data arising from different label
spaces and data structures. Secondly, integrating our method with human an-
notation and model training processes will also be valuable. This could involve
using our approach to identify inconsistencies in label assignments or to conduct
a fine-grained evaluation of models.
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5.6 Conclusion

In this paper, we propose a novel data relation function and graph algorithms
for detecting label errors and outlier data using the relational structure of data
in the feature embedding space. Our approach achieves state-of-the-art perfor-
mance in both label error and outlier/OOD detection tasks, as demonstrated
through extensive experiments on large-scale benchmarks. Furthermore, we in-
troduce a data contextualization tool based on our data relation that can aid
in data diagnosis. Our algorithms and tools can facilitate the analysis of large-
scale datasets, which is crucial for the development of robust machine-learning
systems.
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Chapter 6

Dataset Condensation via Efficient
Synthetic-Data Parameterization

6.1 Introduction

Deep learning has achieved great success in various fields thanks to the recent
advances in technology and the availability of massive real-world data [108|.
However, this success with massive data comes at a price: huge computational
and environmental costs for large-scale neural network training, hyperparameter
tuning, and architecture search [148, 16, 34, 245|.

An approach to reduce the costs is to construct a compact dataset that con-
tains sufficient information from the original dataset to train models. A classic
approach to construct such a dataset is to select the coreset [151|. However,
selection-based approaches have limitations in that they depend on heuristics
and assume the existence of representative samples in the original data [238].
To overcome these limitations, recent studies, called dataset condensation or
dataset distillation, propose to synthesize a compact dataset that has better
storage efficiency than the coresets [202|. The synthesized datasets have a va-
riety of applications such as increasing the efficiency of replay exemplars in
continual learning and accelerating neural architecture search [239].

The natural data satisfy regularity conditions that form a low-rank data
subspace [73], e.g., spatially nearby pixels in a natural image look similar and
temporally adjacent signals have similar spectra in speech [235]. However, the
existing condensation approaches directly optimize each data element, e.g.,
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Figure 6.1 Illustration of the proposed dataset condensation framework with
multi-formation. Under the fixed-size storage for condensed data, multi-
formation synthesizes multiple data used to train models. We optimize the con-
densed data in an end-to-end fashion by using the differentiable multi-formation
functions.

pixel by pixel, without imposing any regularity conditions on the synthetic
data [138, 237]. Under the limited storage budget, this inefficient parameteriza-
tion of synthetic datasets results in the synthesis of a limited number of data,
having fundamental limitations on optimization. Furthermore, optimizing the
synthetic data that have comparable training performance to the original data
is challenging because it requires unrolling the entire training procedure. Recent
studies propose surrogate objectives to address the challenge above, however,
there are remaining questions on why certain objectives are better proxies for
the true objective [237, 238|.

In this work, we pay attention to making better use of condensed data
elements and propose a novel optimization framework resolving the previous
limitations. Specifically, we introduce a multi-formation process that creates
multiple synthetic data under the same storage constraints as existing ap-
proaches (Figure 6.1). Our proposed process naturally imposes regularity on
synthetic data while increasing the number of synthetic data, resulting in an
enlarged and regularized dataset. In Section 6.3.3, we theoretically analyze the
multi-formation framework and examine the conditions where the improvement
is guaranteed. We further analyze the optimization challenges in the gradient
matching method by Zhao and Bilen [238] in Section 6.4. Their approach induces
imbalanced network gradient norms between synthetic and real data, which is
problematic during optimization. Based on our analysis and empirical findings,
we develop improved optimization techniques utilizing networks trained on the
real data with stronger regularization and effectively mitigate the mentioned
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problems.

In this regard, we present an end-to-end optimization algorithm that cre-
ates information-intensive condensed data significantly outperforming all ex-
isting condensation methods. Given fixed storage and computation budgets,
neural networks trained on our synthetic data show performance improvements
of 10~20%p compared to state-of-the-art methods in experimental settings with
various datasets and domains including ImageNet and Speech Commands [206].
We further verify the utility of our condensed data through experiments on con-
tinual learning, demonstrating significant performance improvements compared
to existing condensation and coreset methods. We release the source code at
https://github.com/snu-mllab/Efficient-Dataset-Condensation.

6.2 Preliminary

Given the storage budget, the goal of data condensation is to build a surro-
gate dataset S of the original training dataset 7 such that an arbitrary model
trained on S is similar to the one trained on 7 [202]|. Oftentimes, the measure
of similarity is in terms of the model performance on the test set because that
leads to meaningful applications such as continual learning and neural architec-
ture search [239]. Instead of solving this ultimate objective, previous methods
have proposed different surrogates. For example, Wang et al. [202| propose to
optimize S such that a model trained on & minimizes the loss values over 7.
However, this approach involves a nested optimization with unrolling multiple
training iterations, requiring expensive computation costs.

Rather than direct optimization of model performance, Zhao et al. [239]
propose a simpler optimization framework that matches the network gradients
on S to the gradients on 7. Let us assume a data point is m-dimensional and
S € R™™ where n is the number of data points in S. Zhao et al. [239] optimize
the synthetic data as

T

Ir‘lsa%imize Cos (Vgl(04;8),Vel(0,;T)) (6.1)
e nxXm t:0

subject to 0;p 1 = 0 — Vel (0y;S) fort =0,...,7 — 1,

where 6; denotes the network weights at t'' training step from the randomly
initialized weights 6y given S, ¢(6;S) denotes the training loss for weight 6 and
the dataset S. Cos(-,-) denotes the channel-wise cosine similarity. Zhao et al.
[239] have reported that the class-wise gradient matching objective is effective
for dataset condensation. They propose an alternating optimization algorithm
with the following update rules for each class c:
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Se + S+ AV, Cos (Vol(0; Se), Vol(6;Te))
0« 0 —nVel(6;S),

where S, and T, denote the mini-batches from the datasets S and T, respec-

tively. Under the formulation, Zhao and Bilen [238| propose to utilize differen-
tiable siamese augmentation (DSA) for a better optimization of the synthetic
data. DSA performs gradient matching on augmented data where the objec-
tive becomes E.y [Cos (Vgl(0; a,,(S)), Vel(0;a,(T)))]. Here, a,, means a param-
eterized augmentation function and VW denotes an augmentation parameter
space. Subsequently, Zhao and Bilen [237] propose to match the hidden features
rather than the gradients for fast optimization. However, the feature matching
approach has some performance degradation compared to gradient matching
[237]. Although this series of works have made great contributions, there are
remaining challenges and questions on their surrogate optimization problems.
In this work, we try to resolve the challenges by providing a new optimization
framework with theoretical analysis and empirical findings.

6.3 Multi-Formation Framework

In this section, we pay attention to the synthetic-data parameterization in op-
timization and present a novel data formation framework that makes better use
of condensed data. We first provide our motivating observations and introduce
a multi-formation framework with theoretical analysis.

6.3.1 Observation

We first provide our empirical observations on the effects of the number and
resolution of the synthetic data in the matching problem. The existing conden-
sation approaches aim to synthesize a predetermined number of data about 10
to 50 per class [238, 138]. The left subfigure in Figure 6.2 shows the condensa-
tion matching loss curves of DSA over various numbers of synthetic data per
class. As shown in the figure, more synthetic data lead to a smaller matching
loss, indicating the importance of the number of synthetic data in the matching
problem. For a comparison under the same data storage budget, we measure
the matching loss on the same network after reducing the resolution of the op-
timized synthetic data and resizing the data to the original size. In the right
subfigure in Figure 6.2, we find the resolution produces a moderate change in
matching loss as the number of data does, even if we do not take the resolution
modification into account during the condensation stage. For example, points
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Figure 6.2 (Left) Matching loss curves over an increasing number of synthetic
data per class (n). (Right) Matching loss heat map over various resolutions
and numbers of data per class. The x-axis refers to the downsampled image
resolution. We measure values on the same network after resizing data to the
original size (CIFAR-10).

at (16, 48) and (32, 12), which require an equal storage size, have similar loss
values. Motivated by these results, we propose a multi-formation framework
that makes better use of the condensed data and forms the increased number
of synthetic data under the same storage budget.

6.3.2 Multi-Formation

The existing approaches directly match condensed data S to the original train-
ing data 7 and use S as the synthetic training data. Instead, we add an inter-
mediate process that creates an increased number of synthetic data from S by
mapping a data element in S to multiple data elements in the synthetic data
(Figure 6.1). The previous work by Zhao and Bilen [238] reports that the use
of random augmentations in matching problems degrades performance due to
the misalignment problem. They argue the importance of the deterministic de-
sign of the matching problem. In this regard, we propose to use a deterministic
process rather than a random process.

Consistent to existing approaches, we optimize and store condensed data
S € R™*™_For n' > n, we propose a multi-formation function f : R"*m — R»'xm
that augments the number of condensed data S and creates multiple synthetic
training data f(S) in a deterministic fashion. For any matching objective D
(lower the better) and target task objective ¢, the optimization and evaluation
stages of condensed data & with multi-formation function f are

S* = argmin D(f(S),T) (Optimization)
SeRnX”m
0* = argmin £(6; f(S™)). (Evaluation)
0
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Figure 6.3 Illustration of the proposed multi-formation functions, in the case of
multi-formation by a factor of 2.

That is, we perform matching on 7 using f(S) and use them for evaluation.
This enables us to optimize the synthetic dataset with an increased number of
data, using the same storage budget. Figure 6.1 illustrates the optimization pro-
cess with multi-formation. Note, we can use conventional data augmentations
following the multi-formation.

Given a differentiable multi-formation function and matching objective, we
optimize S in an end-to-end fashion by gradient descent. In this work, we design
a simple differentiable multi-formation function and evaluate the effectiveness
of our approach. The idea is to locally interpolate data elements while preserv-
ing the locality of natural data, i.e., spatially nearby pixels in a natural image
look similar and temporally adjacent signals have similar spectra in speech
[73, 235]. Specifically, we partition each data and resize the partitioned data to
the original size by using bilinear upsampling (Figure 6.3). Note, this forma-
tion function has negligible computation overhead. Furthermore, the formation
function creates locally smooth synthetic data that might naturally regularize
the optimization from numerous local minima. We use a fixed uniform partition
function in our main experiments in Section 6.5.

6.3.3 Theoretical Analysis

In this section, we aim to theoretically analyze our multi-formation framework.
Here, we assume a data point is m-dimensional. The natural data have reg-
ularity that makes difference from random noise [73|. We assume that data
satisfying this regularity form a subspace A/ C R™. That is, the original train-
ing dataset 7 = {t;};*, satisfies t; € N for ¢ = 1,...,n;. With abuse of
notation, we denote the space of datasets with n data points as R"*™ =
{{di}~, | d; e R™ for i = 1,...,n}. We further define the space of all datasets
D = UpenR™™ and the synthetic—dataset space of a multi-formation function
R o RV M = {£(S) | S € R*™™}. We now introduce our defini-
tion of distance measure between datasets. We say data d is closer to dataset
X ={d;}e_, than d', if Vi € [1,...,k], ||[d —di|| < ||d’' — di]|-
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Definition 5. A function D : D x D — [0,00) is a dataset distance measure, if
it satisfies the followings: VX, X' € D where X = {d;}}_,, Vi € [1,...,k],

1. D(X,X)=0 and D(X,X') = D(X’, X).
2. ¥d € R™ s.t. d is closer to X' than d;, D(X \ {d;} U{d}, X’) < D(X,X’).
3. D(X,X'U{d;}) < D(X,X").

The definition above states reasonable conditions for dataset distance mea-
surement. Specifically, the second condition states that the distance decreases if
a data point in a dataset moves closer to the other dataset. The third condition
states that the distance decreases if a data point in a dataset is added to the
other dataset. Based on the definition, we introduce the following proposition.

Proposition 10. If N C My, then for any dataset distance measure D,

min D(f(S),7) < min D(S,T).

SeRnXm SeRant

Proof. For simplicity, we denote [1,...,n] as [n]. Let us denote 7 = {t;};*; and
S = {sj}}j_1, where t; € N C R™ and s; € R™, Vi € [n] and Vj € [n]. Under
the assumption that A is a subspace of R™, there exists the projection of s;
onto N, 5; € N. Because t; € N for i =1,...,ny, [|5; — || < ||s; — t:l, Vj € [n]
and Vi € [n;]. This means the projection 5; is closer to 7 than s;, Vj € [n]. Let
us define a partially projected dataset S, = {5;}_; U {s;}7_,,,. Then by the
second axiom,

D(S,,T) < D(S,-1,T)<...<D(S,T).

This result means that the optimum S§* = argmin D(S,T) satisfies S* € N™.
Note our multi-formation augments the number of data from n to n’ where
n < n'. Let us denote k&' = n’ —n and S*,, = §* U {t;}*|. By the third axiom,

D(S54a,T) < D(S™,T).

The elements of S, lie in A and S, € N"*'. From the assumption N C
My, IS e R™*™ s.t. f(S) =S¥, Thus,
min D(f(S),T) < D(Saga: T)
SeRnxm

< D(S*,T) = Srﬁin D(S,T).
c nxm
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Proposition 10 states that our multi-formation framework achieves the bet-
ter optimum, i.e., the synthetic dataset that is closer to the original dataset
under any dataset distance measure. Note, the assumption N C M; means
that the synthetic-dataset space by f is sufficiently large to contain all data
points in N.

6.4 Improved Optimization Techniques

In this section, we develop optimization techniques for dataset condensation.
We first analyze gradient matching [238] and seek to provide an interpretation
of why gradient matching on condensation works better than feature matching
[237]. We then examine some of the shortcomings of existing gradient matching
methods and propose improved techniques.

6.4.1 Interpretation

Convolutional or fully-connected layers in neural networks linearly operate on
hidden features. From the linearity, it is possible to represent network gradients
as features as in Proposition 11. For simplicity, we consider one-dimensional
convolution on hidden features and drop channel notations.

Proposition 11. Let w; € RE and hy € RW each denote the convolution weights
and hidden features at the t™ layer given the input data x. Then, for a loss

function ¢, dﬁi) = >, atihy i, where hy; € RE denotes the it convolution patch
of hy and a;; = dw) R,

T
dwt ht,i

Proposition 11 states the gradients with respect to convolution weights can
be regarded as the weighted sum of local features h;;. Note, the weight a;;
means the loss function sensitivity of the i** output at the ' layer, and we can
interpret the network gradients as the saliency-weighted average local features.
In this respect, we can view gradient matching as saliency-weighted average
local feature matching.

Intuitively, saliency-weighting selectively extracts information correspond-
ing to target labels. In addition, by matching averaged local features, we globally
compare features regardless of location, which might be beneficial for datasets
where target objects are non-aligned, e.g., ImageNet [38]. We conjecture these
properties explain why gradient matching performs better than feature match-
ing. In the following, we propose an improved gradient matching method by
examining the shortcomings of existing gradient matching approaches.
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Figure 6.4 Evolution of L' norm of the network gradients given real or syn-
thetic data. The x-axis represents the number of training steps of the networks.
Here, both networks are trained on the synthetic data with augmentations. We
measure the values on CIFAR-10 with ConvNet-3 used in DSA.

6.4.2 Problems and Solutions

The existing gradient matching approach by DSA uses network weights 6,
trained on a condensed dataset S (see Equation (6.1)). However, this approach
has some drawbacks: 1) In the optimization process, S and 6; are strongly
coupled, resulting in a chicken-egg problem that generally requires elaborate
optimization techniques and initialization [130]. 2) Due to the small size of S
(~ 1% of the original training set), overfitting occurs in the early stage of the
training and the network gradients vanish quickly. Figure 6.4 shows that the
gradient norm on S vanishes whereas the gradient norm on the real data T
increases when the network is trained on S. This leads to undesirable match-
ing between two data sources, resulting in degraded performance when using
distance-based matching objectives, such as mean squared error [239).

To overcome these issues, we propose to utilize networks trained on 7 in-
stead. By doing so, we optimize & with networks that are no longer dependent
on S, resulting in a decoupled optimization problem:

minimize D (Vol(07; (S)), Val(67;T)) .

Here, 67 represents network weights trained on 7 and D denotes a distance-
based matching objective. In addition, the large size of T alleviates the gradi-
ent vanishing from overfitting [13]. To further enhance the effect, we utilize
stronger regularization for training networks. In detail, rather than a single
random augmentation strategy adopted in DSA, we propose to use a sequence
of augmentations and CutMix [227|. Note, the mixup techniques such as Cut-
Mix effectively resolve the neural networks’ over-confidence issue by using soft
labels for training [91, 92|. To sum up, the proposed utilization of real data
and stronger augmentations effectively resolve the gradient vanishing problem
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Figure 6.5 (Left) Condensation performance from fixed pretrained networks.
The x-axis represents the number of epochs a network is trained on. (Right)
Gradient analysis of the pretrained networks. The left axis measures the L'
norm of the network gradients given a batch of data consisting of the same
class. The right axis measures the average pairwise cosine-similarity between
the gradients on a single data of the same class. The values are measured on
ImageNet with 10 subclasses.

and enable the use of distance-based objective functions, resulting in the better
distillation of learning information onto the synthetic data.

6.4.3 Algorithm

We further analyze the effect of network weights #7 on condensation. In detail,
we examine when networks show the best condensation performance during the
learning process on 7. Here, the performance means the test accuracy of neural
networks trained on the condensed data. The left subfigure in Figure 6.5 shows
the performance of condensed data optimized by a network trained for a specific
epoch. We observe the best condensation performance by the networks in the
early phase of training near 10 epochs.

To clarify the observation, we measure the networks’ gradient norm given an
intra-class mini-batch (right subfigure in Figure 6.5). As a result, we find that
the gradient norm increases in the early phase of training and then decreases
during the further training epochs. We also observe a similar pattern when we
measure pairwise cosine-similarity between the gradients given a single data of
the same class. These results indicate the gradient directions among intra-class
data coincide at the early phase of training but diverge as the training pro-
gresses. This phenomenon is similarly observed by Jastrzebski et al. [77]; the
first eigenvalue of the networks’ hessian matrix increases in the early phase and
decreases after a few epochs. Based on the observation, we argue that intra-class
network gradients in the early training phase have more useful information to
distill, and propose to utilize networks in the early training phase for conden-
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Algorithm 5 Information-Intensive Dataset Condensation
Input: Training data T
Notation: Multi-formation function f, parameterized augmentation function
a,,, mixup function h, loss function I, number of classes N,
Definition: D(B, B’;0) = |Vel(0; B)) — Val(0; B')||
Initialize condensed dataset S
repeat
Initialize or load pretrained network 6
fori=1to M do
for c=1 to N. do
Sample an intra-class mini-batch T, ~ 7,S. ~ S
Update S. < S. — AV, D(ay,(f(Se)), aw(T:); 0;)
end for
Sample a mini-batch T ~ T
Update 6;41 < 6; — nVgl(0;; h(a. (T)))
end for
until convergence
Output: S

sation. Additionally, using the early phase neural networks has advantages in
terms of the training cost.

We empirically observe that using multiple network weights for condensation
rather than the fixed network weights improves the generalization of the con-
densed data over various test models. Therefore, we alternately update S and
67 during the optimization process. In detail, we first initialize §7 by random
initialization or loading pretrained weights trained only for a few epochs, and
then we alternatively update S and 67 . In addition, we periodically reinitialize
07 to maintain the network to be in the early training phase. Putting together
with our multi-formation framework, we propose a unified algorithm optimizing
information-intensive condensed data that compactly contain the original train-
ing data information. We name the algorithm as Information-intensive Dataset
Condensation (IDC) and describe the algorithm in Algorithm 5. Note, we adopt
the siamese augmentation strategy by DSA.

6.5 Experimental Results

In this section, we evaluate the performance of our condensation algorithm over
various datasets and tasks. We first evaluate our condensed data from CIFAR-
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Pixel/Class  Test Model ‘ Random Herding DSA  KIP DM ‘ IDC-I IDC ‘ Full dataset

10x32x39  ConvNet-3 37.2 41.7 52.17 492 53.8 | 58.3 (0.3) 67.5 (0.5) 88.1
(0.2%) ResNet-10 34.1 35.9 32.9 . 42.3 | 50.2 (0.4) 63.5 (0.1) 92.7
e DenseNet-121 36.5 36.7 34.5 - 39.0 | 49.5 (0.6) 61.6 (0.6) 94.2
ConvNet-3 56.5 59.8 60.6"  56.7f  65.6 | 69.5 (0.3) 74.5 (0.1) 88.1

50x32x32 . . K
(1%) ResNet-10 51.2 56.5 49.7 - 58.6 | 65.7 (0.7) 172.4 (0.5) 92.7
DenseNet-121 55.8 59.0 49.1 - 57.4 | 63.1 (0.2) 71.8 (0.6) 94.2

Table 6.1 Top-1 test accuracy of test models trained on condensed datasets from
CIFAR-10. We optimize the condensed data using ConvNet-3 and evaluate the
data on three types of networks. Pixel/Class means the number of pixels per
class of the condensed data and we denote the compression ratio to the original
dataset in the parenthesis. We evaluate each case with 3 repetitions and denote
the standard deviations in the parenthesis. T denotes the reported results from
the original papers.

10, ImageNet-subset, and Speech Commands by training neural networks from
scratch on the condensed data [103, 38, 206]. Next, we investigate the proposed
algorithm by performing ablation analysis and controlled experiments. Finally,
we validate the efficacy of our condensed data on continual learning settings
as a practical application [144|. We use multi-formation by a factor of 2 in our
main experiments except for ImageNet where use a factor of 3.

6.5.1 Condensed Dataset Evaluation

A common evaluation method for condensed data is to measure the test accu-
racy of the neural networks trained on the condensed data [238]. It is widely
known that test accuracy is affected by the type of test models as well as the
quality of the data [245|. However, some previous works overlook the contri-
bution from test model types and compare algorithms on different test models
[138]. In this work, we emphasize specifying the test model and comparing the
condensation performance on an identical test model for fair comparison. This
procedure isolates the effect of the condensed data, thus enabling us to purely
measure the condensation quality. We further evaluate the condensed data on
multiple test models to measure the generalization ability of the condensed data
across different architectures.

Baselines we consider are a random selection, Herding coreset selection [208],
and the previous state-of-the-art condensation methods; DSA, KIP, and DM
[238, 138, 237|]. We downloaded the publicly available condensed data, and
otherwise, we re-implement the algorithms following the released author codes.
We denote our condensed data with multi-formation as IDC and without multi-
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Pixel Test Evaluation
Ratio Model DSA KIP DM | IDC-I IDC Time
CN 52.1 49.1 53.8 | 58.3 65.3 10s
0.2% RN 32.9 40.8 423 | 50.2 57.7 20s
DN 345 421 39.0| 49.5 60.6 100s
CN 60.6 579 656 | 69.5 T73.6 50s
1% RN 49.7 529 586 | 65.7 72.3 90s
DN 49.1 544 574 | 63.1 71.6 400s

Table 6.2 Top-1 test accuracy of test models with the fixed training steps. Each
row matches the same dataset storage size and evaluation cost. CN denotes
ConvNet-3, RN denotes ResNet-10, and DN denotes DenseNet-121. We mea-
sure training times on an RTX-3090 GPU.

formation as IDC-I which can also be regarded as a method with the identity
formation function. Finally, it is worth noting that KIP considers test models
with ZCA pre-processing [138]. However, we believe test models with standard
normalization pre-processing are much more common to be used in classification
and continual learning settings [34, 41, 163]. In this section, we focus on test
models with standard normalization pre-processing.

CIFAR-10. The CIFAR-10 training set consists of 5,000 images per class
each with 32 x 32 pixels. Following the condensation baselines, we condense the
training set with the storage budgets of 10 and 50 images per class by using
3-layer convolutional networks (ConvNet-3). We evaluate the condensed data
on multiple test models: ConvNet-3, ResNet-10, and DenseNet-121 [60, 72].
It is worth noting that Zhao and Bilen [238| used data augmentation when
evaluating DSA but did not apply any data augmentation when evaluating
simple baselines Random and Herding. This is not a fully fair way to compare
the quality of data. In our paper, we re-evaluate all baselines including DSA by
using the same augmentation strategy as ours and report the best performance
for fair comparison.

Table 6.1 summarizes the test accuracy of neural networks trained on each
condensed data. From the table, we confirm that both IDC and IDC-I sig-
nificantly outperform all the baselines. Specifically, IDC outperforms the best
baseline by over 10%p across all the test models and compression ratios. How-
ever, IDC requires additional training steps to converge due to the formation
process in general. Considering applications where training cost matters, such
as architecture search, we compare methods under the fixed training steps and
report the results in Table 6.2. That is, we reduce the training epochs when

75



Class Pixel/Class  Test Model Random Herding DSA DM‘ IDC-I IDC ‘Full Dataset

10x924x294 ResNetAP-10 46.9 504 527 52.3 | 61.4 (0.8) 72.8 (0.6) 90.8

10 0.8%) ResNet-18 433 470 441 417 | 562 (12) 73.6 (0.4) 93.6
o7 EfficientNet-B0 |  46.3 502  48.3 45.0 | 58.7 (14) 74.7 (0.5) 95.9

4 4 4 - <44

o0x224x294 ResNetAP-10 518 575 574 593 | 655 (10) 76.6 (0.4) 9038

10 (1.6%) ResNet-18 54.3 579 569 53.7 | 66.0 (0.7) 75.7 (1.0) 93.6
o7 EfficientNet-B0 |  60.3 59.0  62.5 57.7 | 66.3 (0.5) 78.1 (L.0) 95.9

L0x924x 994 ResNetAP-10 20.7 226 21.8 223|292 (04) 46.7 (0.2) 82.0

100 0.8%) ResNet-18 15.7 159 135 158 | 233 (0.3) 40.1 (0.5) 84.6
o7 EfficientNet-B0 | 22.4 245 199 207 | 27.7 (0.6) 36.3 (0.6) 85.6
90x224x294 ResNetAP-10 29.7 311 307 304 | 345 (0.1) 53.7 (0.9) 82.0

100 (16%) ResNet-18 24.3 234 200 234 |298(0.2) 46.4 (1.6) 84.6
o7 EfficientNet-B0 | 33.2 356 30.6 31.0 | 33.2(0.5) 49.6 (1.2) 85.6

Table 6.3 Top-1 test accuracy of test models trained on condensed datasets
from ImageNet-subset. We optimize the condensed data using ResNetAP-10
and evaluate the data on three types of networks. We evaluate the condensed
data by using the identical training strategy.

evaluating IDC, and match the number of gradient descent steps identical to
the other baselines. In the case of KIP, which originally uses a neural tangent
kernel for training networks, we re-evaluate the dataset by using stochastic gra-
dient descent as others to match the computation costs. Table 6.2 shows IDC
still consistently outperforms baselines by a large margin.

ImageNet. Existing condensation methods only perform the evaluation on
small-scale datasets, such as MNIST or CIFAR-10. To the best of our knowl-
edge, our work is the first to evaluate condensation methods on challenging
high-resolution data, ImageNet [38], to set a benchmark and analyze how the
condensation works on large-scale datasets. We implement condensation meth-
ods on ImageNet-subset consisting of 10 and 100 classes [189], where each class
consists of approximately 1200 images. Note, KIP requires hundreds of GPUs
for condensing CIFAR-10 and does not scale on ImageNet. In the ImageNet ex-
periment, we use ResNet AP-10 for condensation, which is a modified ResNet-10
by replacing strided convolution as average pooling for downsampling [237]. For
test models, we consider ResNetAP-10, ResNet-18, and EfficientNet-B0 [186].
Table 6.3 summarizes the test accuracy of neural networks trained on the
condensed data. The table shows IDC and IDC-I significantly outperform all
the baselines across the various numbers of classes, compression ratios, and test
models. One of the notable results is that the existing condensation methods
do not transfer well to other test models. For example, DM performs better on
ResNetAp-10 compared to Random selection but performs poorly on other test
models. On contrary, IDC consistently outperforms other methods regardless
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Figure 6.6 Representative samples from IDC-I condensed data on ImageNet-
100. The corresponding class labels are as follows: bottle cap, cabbage, lorikeet,
car wheel, honeycomb, Shih-Tzu, gibbon, tile roof, and rocking chair.

of test model types. This indicates that our networks trained on large real
datasets extract more task-relevant information with less architectural inductive
bias than randomly initialized networks (DM) or networks trained on synthetic
datasets (DSA). In Figure 6.6, we provide representative condensed samples
from IDC-I. Note, these samples are initialized by random real training samples.

Speech Domain. We evaluate our algorithm on speech domain data to verify
the generality of our algorithm. In detail, we condense Mini Speech Commands
that contains 8,000 one-second audio clips of 8 command classes [206]. We
preprocess speech data and obtain magnitude spectrograms each of size 64 x 64.
In the case of speech data, we use a one-dimensional multi-formation function
by a factor of 2 along the time-axis of a spectrogram. Table 6.4 shows the test
accuracy on the speech dataset. IDC consistently outperforms baseline methods
by large margins and achieves test performance close to the full dataset training,
verifying its effectiveness on speech domain as well as on image domain.
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Spectrogram/ | p. 1 Herd. DSA DM | IDC-I IDC | Tl
Class Dataset
10x64x64 (1%) | 426 562 650 69.1[ 733 829 | .
20%64x64 (2%) | 57.0 729 740 772 | 830 86.6 :

Table 6.4 Top-1 test accuracy of ConvNet-4 trained on condensed spectrograms.
Rand. and Herd. denote Random and Herding.

Syn+ Syn+ Real+ Real+ Real+Reg.+

Test Model | ¢ "(DSA) MSE ~ Cos  MSE  MSE (Ours)
ConvNet-3 60.6 25.8 63.4 67.0 69.5
ResNet-10 497 257 590 616 65.7

Table 6.5 Ablation study of the proposed techniques (50 images per class on
CIFAR-10). Syn denotes condensing with networks trained on the synthetic
dataset and Real denotes condensing with networks trained on the real dataset.
Cos denotes cosine-similarity matching objective, MSE denotes mean-square-
error matching objective, and Reg. denotes our proposed stronger regulariza-
tion.

6.5.2 Analysis

Ablation Study. In this section, we perform an ablation study on our gra-
dient matching techniques described in Section 6.4. Specifically, we measure
the isolated effect of 1) networks trained on real training data, 2) distance-
based matching objective, and 3) stronger regularization on networks. Table 6.5
shows the ablation results of IDC-I on CIFAR-10 condensed with 50 images
per class. From the table, we find that using MSE matching objective with
networks trained on the synthetic dataset (Syn+MSE) degenerates the perfor-
mance significantly. However, when we use the MSE objective with networks
trained on the real training dataset, the performance significantly increases com-
pared to the baseline (DSA), especially on ResNet-10. Furthermore, we find that
strong regularization on networks brings additional performance improvements
on both test models. The results demonstrate that the distance-based objective
(MSE) better distills training information than the similarity-based objective
(Cos) when using well-trained networks.

78



IDC IDC-I-post IDC-I
Test Model |5 39439)  (200x16x16) | (200x32x32)
ConvNet-3 745 68.8 76.6
ResNet-10 72.4 63.1 74.9

Table 6.6 Test performance comparison of IDC and IDC-I with post-
downsampling (IDC-I-post) on CIFAR-10. We denote the number of stored
pixels in parenthesis.

Comparison to Post-Downsampling. One of the simple ways to save stor-
age budget is to reduce the resolution of the synthesized data. In this subsection,
we compare our end-to-end optimization framework to a post-downsampling ap-
proach which reduces the resolution of the optimized synthetic data and resizes
the data to the original size at evaluation. Table 6.6 shows IDC significantly
outperforms IDC-I with post-downsampling under the same number of stored
pixels, even approaching the performance of IDC-I without downsampling which
stores 4 times more pixels. This result verifies the effectiveness of the end-to-end
approach considering the formation function during the optimization process,
i.e., finding the optimal condensed data given a fixed formation function.

On Multi-Formation Factor. We further study the effect of multi-formation
factor (i.e., upsampling factor). Table 6.7 summarizes the test accuracy of con-
densed data with different multi-formation factors on various data scales. Note,
the higher multi-formation factor results in a larger number of synthetic data
but each with a lower resolution. Table 6.7 shows that datasets have different
optimal multi-formation factors; 2 is optimal for CIFAR-10 and 3-4 are optimal
for ImageNet. These results mean that there is a smaller room for trading off
resolution in the case of CIFAR-10 than ImageNet where the input size is much
larger.

6.5.3 Application: Continual Learning

Recent continual learning approaches include the process of constructing a small
representative subset of data that has been seen so far and training it with
newly observed data [163, 6]. This implies that the quality of the data subset is
bound to affect the continual learning performance. In this section, we utilize
the condensed data as exemplars for the previously seen classes or tasks and
evaluate its effectiveness under the two types of continual learning settings:
class incremental and task incremental [237, 238].

We follow the class incremental setting from Zhao and Bilen [237|, where the
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Dataset Test Multi-Formation Factor
(Pixel/Class)  Model 1 2 3 4

CIFAR-10 ConvNet-3 69.5 T74.5 689 62.0
(50x32x32) ResNet-10 65.7 724 629 59.1

ImageNet-10 ResNetAP-10 | 65.5 73.3 76.6 77.5
(20x224x224) ResNet-18 66.0 70.8 75.7 75.2

Table 6.7 Condensation performance over various multi-formation factors on
CIFAR-10 and ImageNet-10.
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Figure 6.7 Top-1 test accuracy of continual learning with condensed exemplars
on CIFAR-100.

CIFAR-100 dataset is given across 5 steps with a memory budget of 20 images
per class. This setting trains a model continuously and purely on the latest
data memory at each stage [154]. We synthesize the exemplars by only using
the data samples of currently available classes at each stage with ConvNet-
3. We evaluate the condensed data on two types of networks, ConvNet-3 and
ResNet-10, and compare our condensation methods with Herding, DSA, and
DM.

Figure 6.7 shows that IDC-I and IDC are superior to other baselines, both
in ConvNet-3 and ResNet-10. Particularly, our multi-formation approach con-
siderably increases the performance by over 10%p on average. In addition, from
the results on ResNet-10, we find that DSA and DM do not maintain their
performance under the network transfer, whereas our condensation methods
outperform the baselines regardless of the networks types. That is, it is possible
to efficiently condense data with small networks (ConvNet-3) and use the data
on deeper networks when using our methods.

80



6.6 Related Work

One of the classic approaches to establishing a compact representative subset
of a huge dataset is coreset selection [151, 191|. Rather than selecting a subset,
Maclaurin et al. [126] originally proposed synthesizing a training dataset by
optimizing the training performance. Following the work, Such et al. [180] in-
troduce generative modeling for the synthetic dataset. However, these works do
not consider storage efficiency. The seminal work by Wang et al. [202] studies
synthesizing small training data with a limited storage budget. Building on this
work, Sucholutsky and Schonlau [181] attempt to co-optimize soft labels as well
as the data, but they suffer from overfitting. Subsequently, Nguyen et al. [138]
formulate the problem as kernel ridge regression and optimize the data based on
neural tangent kernel. However, this approach requires hundreds of GPUs for
condensation. Zhao et al. [239] propose a scalable algorithm by casting the orig-
inal bi-level optimization as a simpler matching problem. Following the work,
Zhao and Bilen [238] exploit siamese augmentation to improve performance,
and Zhao and Bilen [237] suggest feature matching to accelerate optimization.
Concurrently, Cazenavette et al. [19] proposes to optimize the condensed data
by matching training trajectories on the networks trained on real data.

Discussion on Dataset Structure In this work, we constrain the conden-
sation optimization variables (i.e., S) to have the same shape as the original
training data. This enables us to design an intuitive and efficient formation
function that has negligible computation and storage overhead. However, if we
deviate from pursuing the same shape, there exist a variety of considerable
condensed data structures. For example, we can parameterize a dataset as dic-
tionary phrase coding or neural network generator [128, 51]. Nonetheless, it is
not trivial to tailor these approaches for efficient data condensation. That is, it
may require more storage or expensive computation costs for synthesis.

6.7 Conclusion

In this study, we address difficulties in optimization and propose a novel frame-
work and techniques for dataset condensation. We propose a multi-formation
process that defines enlarged and regularized data space for synthetic data opti-
mization. We further analyze the shortcomings of the existing gradient matching
algorithm and provide effective solutions. Our algorithm optimizes condensed
data that achieve state-of-the-art performance in various experimental settings
including speech domain and continual learning.
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Chapter 7

Compressed Context Memory For
Online Language Model
Interaction

7.1 Introduction

Transformer language models have exhibited exceptional language processing
capabilities, achieving remarkable results in various applications [196]. In par-
ticular, the attention mechanism, which encompasses the entire context win-
dow, enables the language models to respond with a nuanced understanding of
context. With this contextual understanding, services like ChatGPT or Bard
can generate responses customized to individual users through online interac-
tions [142, 129]. In this online scenario, the context used for language model
inference accumulates over time, raising an important challenge in efficiently
handling this growing context.

A straightforward approach is to deal with previous contexts as a prompt,
which leads to a continual increase in inference time and memory usage due to
the growing length of contexts. Alternately, caching the attention hidden states
of Transformer would be impractical [35], as the caching capacity and attention
costs increase with the accumulation of contexts. Recent studies propose com-
pressing contextual information into concise sequences of token embeddings or
attention keys/values (denoted as KV) |24, 135]. However, those methods pri-
marily focus on fixed-context scenarios and are not designed for dynamically
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changing contexts. Thus, they still face inefficiency and redundancy when deal-
ing with accumulating contexts.

In this paper, we propose a novel language model framework incorporating
a compressed context memory system for efficient online inference (Figure 7.1).
Our memory system is capable of dynamic updates during online inference
with minimal memory and computation overhead. To this end, we optimize
a lightweight conditional LoRA [69], enabling language models to construct a
compressed attention KV memory of contextual information through the for-
ward computation pass. On the other hand, dynamic memory updates require
a recursive context compression procedure, which leads to training inefficien-
cies. To address this challenge, we propose an efficient training strategy that
unrolls the recursive context compression procedure and processes the recursive
procedure in parallel. In the inference phase, language models utilize the com-
pressed memory to generate responses to subsequent input queries with reduced
attention operations and memory.

Our approach offers several advantages compared to existing efficient con-
text processing methods: 1) Unlike approaches that propose new attention
structures such as the Linear Transformer [87|, our method simply involves
the integration of lightweight adapters to existing Transformer language mod-
els, leveraging the weights of pretrained models. 2) Unlike fixed-context com-
pression techniques such as Gisting or ICAE [135, 47|, our approach is able to
dynamically compress newly added context with minimal computational over-
head. 3) In contrast to methods that recurrently compress context into token
embeddings, such as RMT or AutoCompressor [17, 24|, our approach focuses
on compressing attention keys/values, enabling a fully parallelized training pro-
cess. Notably, our approach achieves a training speed that is 7x faster than the
mentioned approaches (Table 7.8) and does not require additional forward com-
putations for the compressed token embeddings during inference.

Our online compression framework has a wide range of applications, includ-
ing conversation, personalization, and multi-task learning. Notably, by com-
pressing continuously provided dialogues, user profiles, and task demonstra-
tions, our approach enables the language model to perform online inference
with reduced memory usage and attention costs. To substantiate our claims,
we evaluate our system across diverse datasets, including DailyDialog, LaMP,
and MetalCL [112, 168, 132|. Through empirical analyses, we demonstrate that
our method excels in both efficiency and performance compared to established
context compression baselines. In particular, our method achieves equivalent
performance with only 1/5 of the context memory required when using the full
context (Figure 7.6). This enhanced memory efficiency translates into substan-
tial improvements in language model throughput when using batch processing
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Figure 7.1 Main concept of online inference systems. Left: Conventional
online inference approach. Right: The proposed system with compressed context
memory. The colored boxes represent attention keys/values (or input tokens)
required for Transformer inference. The new context refers to the sequence
comprising an input and a model output from the preceding interaction.

A100 PCIe 80GB RTX 3090 24GB
Full context CCM-concat CCM-merge | Full context CCM-concat CCM-merge
Throughput (sample/sec) 5.3 24.4 69.9 3.5 18.6 50.7
Maximum batch size 60 300 950 10 50 150
Context KV length 800 128 8 800 128 8
Performance (Accuracy %) 70.8 70.0 69.6 70.8 70.0 69.6

Table 7.1 Analysis of inference throughput on the MetalCL dataset [132] at time
step 16 with LLaMA-7B and FP16 precision [192]. We measure throughput
using batch processing on a single GPU. CCM-{concat,merge} refers to our
proposed method.

on memory-constrained GPUs (Table 7.1). Finally, we demonstrate the effi-
cacy of our approach in a streaming setting with an unlimited context length,
outperforming the sliding window method (Figure 7.8).

7.2 Preliminary

Target scenario and notation. Let 7 denote a space of texts. We focus
on the online inference scenario, aiming to predict the output O(t) € T based
on the input I(t) € T and the accumulated context C(t) = [¢(1),...,c(t)] for
time step t € [1,...,T], where T" € N represents the maximum number of
time steps. Here, ¢(t) € T denotes a newly integrated context at time step
t, which comprises the interaction results from the preceding time step t-1,
including I(¢-1), O(t-1), and any additional user feedback. In Table 7.2, we
formulate diverse applications according to our target scenario and notations,
where each context C(t) contains accumulated information for a specific identity
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Application Dataset | Context C(t) Input I(t) Output O(t)

Conversation DailyDialog [112] Dialogue history User query Reply
Personalization LaMP [168§] User profiles User query Recommendation
Multi-task learning MetaICL [132] Task demonstrations ~ Problem Answer

Table 7.2 Illustrative instances of online inference scenarios.

(e.g., a task or a user). We represent the dataset with multiple identities as
D = {(Ci(t), Li(t),0i(t)) | i € Z,t € [1,...,T]}, where Z denotes an index set
of identities. We randomly split Z into a training set Zi s, and a test set Ziest
for experiments.

Context compression. Let us consider a pretrained language model fy :
7 — R*, which models the probability distribution over the text space T.
A typical approach for predicting output O(t) involves using the full context
C(t) as O(t) ~ fo(- | C(t),1(t)). However, this approach requires increasing
memory and computation costs over time for maintaining and processing the
entire context C(t). One can employ context compression techniques to mitigate
this issue, compressing contexts into a shorter sequence of attention key/value
pairs or soft prompts [135, 47|. Given the compression function geomp, the infer-
ence with compressed contexts becomes O(t) ~ fo(- | geomp(C(t)), I(t)), where
|9comp(C'(t))| < |C(t)]. It is worth noting that existing context compression
methods mainly focus on compressing a fixed context C that is repeatedly used
as a prompt [135, 47]. The objective of the compression is to generate outputs
for a given input I that are similar to the outputs generated when using the

full context: fo(- | geomp(C), I) = fo(- | C,T).

7.3 Methods

In this section, we introduce a novel approach named Compressed Context
Memory (CCM), designed for efficient online inference of language models.
Our system compresses the given current context and dynamically updates the
context memory by incorporating the compression result. We further propose
a parallelized training strategy to facilitate efficient large-scale optimization.

7.3.1 Compressed Context Memory

Here, we briefly describe the compression and inference processes at time step
t. We denote the compressed context memory at ¢t as Mem(¢) with an initial
value of Mem(0) = (). When presented with a context ¢(t), we condense the
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Figure 7.2 The illustration of the compression process at time step t. Each
colored box symbolizes attention hidden states.

information within ¢(¢) into the hidden feature h(t) by using the compression
function geomp as

h(t) = geomp(Mem(t-1), c(t)). (7.1)

The compressed context memory Mem(t) is then updated via an update
function gupdate as

Mem(t) = gupdate(Mem(t-1), A(t)). (7.2)

Within a limited memory space, Mem(t) stores contextual information up to
time t. By encompassing only the input I(¢) and memory Mem(t), we conduct
memory-efficient inference as

O(t) ~ fo(- | Mem(t), I(1)). (7.3)

In the following, we elaborate on the compression and update processes.

Compression. We compress context information into attention keys/values
as in Compressive Transformer [160] and Gisting [135]. This compression ap-
proach can be applied within each layer of the language model, providing better
parallelization than the auto-encoding approach [47]. We introduce a specialized
compression token (COMP) and train the language model to compress context
information into the attention keys/values of the (COMP) token, similar to the
Gisting approach.

We assume a Transformer language model fy has L layers with a hidden
state dimension of d. To simplify notation, we set a compression token length
of 1. It is worth noting that the compression token can be extended to arbitrary
lengths. Under these conditions, the total size of the attention keys/values of
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(COMP) token is 2x Lxd. The compression process is illustrated in Figure 7.2.
At each time step t, we append (COMP) token to the context c¢(t) and make
the (COMP) token to have attention on the keys/values of ¢(t) and the previ-
ous memory state Mem(¢-1). Utilizing the resulting attention keys/values of
the (COMP) token, we obtain the compressed hidden feature h(t) € R2¥*d in
Equation (7.1).

Memory update. We propose memory update functions gypdate that are dif-
ferentiable and parallelizable during training. In particular, we consider the sim-
plest form of gupdate and verify the effectiveness of our compression framework.
Considering various application scenarios, we examine two types of memory
systems: 1) a scalable memory and 2) a fixed-size memory, similar to an RNN.

e For a scalable memory setting, we employ the concatenation function as
Gupdate- LThen Mem(t) € RIX2xLxd contains the attention key/value pairs
associated with (COMP) tokens up to time step t. We denote our system with
the concatenation function as CCM-concat.

e For a fixed-size memory system, we propose a merging function to update
information in the memory. Specifically, we update memory by weighted av-
erage: Mem(t) € R2XLXd a5 Mem(t) = (1 — a;)Mem(t-1) + azh(t), where
ap = 1 and a; € [0,1] for ¢ > 2. With this recurrence, Mem(¢) becomes
Mem(t) = 22‘21 a; H};:jﬂ(l —ag) h(j). In the main experiments, we eval-
uate an update method based on the arithmetic average of the compressed
states with a; = 1/t, i.e., Mem(t) = %2321 h(j). We denote our method
with the merging function as CCM-merge.

During training, we compute Mem(1),...,Mem(t) in parallel by averaging
hidden features h(1),...,h(t) simultaneously. In the online inference phase, we
recurrently update the memory by cumulative average using the prior memory
Mem(t-1) and current compression result h(t). It is also worth noting that
CCM-concat can be interpreted as a process that dynamically infers coefficients
for hidden states h(t) through the attention mechanism.

Parallelized training. The direct integration of the compression process of
Equation (7.1) into the training process poses a challenge as it requires recursive
model executions over j = 1,...,t. Such recursive executions prolong training
time and amplify back-propagation errors through the elongated computation
graph [55]. To overcome this challenge, we propose a fully parallelizable training
strategy, taking advantage of the Transformer structure.
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Figure 7.3 Illustration of the parallelized training process. In (a), each
colored box symbolizes attention keys/values of memory, compression tokens,
and normal text tokens. In (b), gray indicates that attention is blocked. In
the figures, (C) stands for (COMP). At each layer, after the parallel updates of
compressed context memory, the attention operation occurs with the mask in
(b). Note the calculation of Mem(¢) occurs after ¢(t) and its subsequent (COMP)
token. Reordering the top row of (b) to align with this temporal relation yields
an autoregressive mask.

For training data (C(t), I(t), O(t)) € Dirain, We insert (COMP) tokens into the
accumulated context C'(t), forming the sequence [¢(1), (COMP) - - - ¢(t), (COMP), I(t)].
We then establish memory update and attention mechanisms, modeling recur-
sive compression processes as parallelized forward computations (Figure 7.3).
In detail, within each layer of a Transformer fy, we update Mem(j) for j < ¢
using the attention keys/values of preceding (COMP) tokens, i.e., h(1),..., h(j),
as in Figure 7.3 (a). Following the memory update, we execute the compres-
sion procedures for j = 1,...,¢ in parallel using the masked attention as in
Figure 7.3 (b). As stated in Equation (7.3), we access the context informa-
tion from previous time steps only through memory during online inference.
Therefore, we restrict ¢(j) to reference only Mem(j-1) for j < ¢ and make
I(t) exclusively have its attention on Mem(¢). Finally, we compute likelihood
fo(O(t) | Mem(t), I(t)) in Equation (7.3) using the output probability obtained
at the last token position of I(t). When the token length of O(t) exceeds 1, we
follow the conventional approach by conditioning on the target label O(t) and
calculating the loss for the next tokens [159]. All these steps take place within
a single forward pass of fy, and the loss gradients are backpropagated to all
tokens across all time steps.
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Algorithm 6 Training stage for compression

Input: Language model fy, training set Dirain
Initialize a conditional LoRA weight Af
Modify the forward pass of fy to update the compressed context memory
repeat

Sample a mini-batch B C Diyain and set B =)

for (Ci(t), I;(t),04(t)) € B do

Prepare an input z; = [¢;(1), (COMP), ..., ¢;(t), (COMP), I;(t)] and a target

yi = O4(t)
B =B U{(ziv)}
end for

Compute loss in eq. (7.4) on B’ through a single forward pass using the
masked attention
Perform a gradient descent step w.r.t. Af

until convergence

Output: Af

Conditional adapter. Current compression methods typically rely on fine-
tuning a language model fy to acquire compression capabilities [135]. In this
approach, the construction of the memory hinges on the adjustment of the lan-
guage model parameter 0, allowing us to parameterize the memory for context
C;(t) as Mem;(t; 0). The objective function for learning compression capability
is then formulated as ming E 7, [—log fo(O;(t) | Mem,(;0), I;(t))].

However, this conventional objective can potentially lead the language model
to generate answers for input I;(¢) without considering the memory Mem;(¢; 8).
Such overfitting to the input /;(¢) can diminish the importance of compressed
context memory during training, which leads to insufficient training of the com-
pression capability. Specifically, when we measure the loss without context,
Etivz[—log fo(O;(t) | 1;(t))], throughout the compression training process with
LLaMA-7B on MetalCL, the loss on training set decreases from 2.69 to 1.84,
whereas the loss on test set remains 2.59. This observation indicates the pres-
ence of overfitting on inputs.

To address this issue, we introduce separate trainable parameters specifically
for compression. To this end, we propose a conditional variant of LoRA [69],
which operates exclusively on (COMP) tokens. This ensures that the trainable
parameters allocated for compression solely influence the model’s compression
capabilities (Figure 7.4). Let W € R%*? denote a parameter of a feed-forward
layer with a hidden dimension d, and let AW = ATB € R%*? denote a corre-
sponding LoRA weight with A, B € R*¥*? and k < d. For input token z and
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Figure 7.4 Feed forward operations of our conditional LoRA.

its corresponding hidden state z;, € R¢, we propose the following conditional
forward computation:

z), = Wap +m - AWy,

where m = 1(z = (COMP)). We denote all trainable LoRA parameters of
a model as Af. The parameter Af only affects the formation of compressed
context memory, and our compression training objective with conditional LoRA
is

minirenize Et inTnin [— 10g fo(Oi(t) | Mem;(t; 0 + AG), I;(t))] . (7.4)

We summarize the training procedure of our approach in Algorithm 6.

7.3.2 Complexity Analysis

We analyze the complexity of approaches in online inference scenarios in Ta-
ble 7.3. In the table, “full context" refers to the method using full context C(t)
during inference, and “fixed-context compression" refers to the method com-
pressing C(t) as geomp(C(t)) at each time step [135]. In Figure 7.5, we visualize
these methods and introduce notations used in complexity analysis.

Regarding the full context method, the context length at time step ¢ is tl.,
resulting in inference memory complexity of O(tl. + ;) and quadratic atten-
tion FLOPS of O(tl.l; + I?). Fixed-context compression methods offer reduced
complexity for inference. However, they process the entire context C(t) for com-
pression, resulting in memory and FLOPS complexities of O(tl.).

Our method, utilizing compressed context memory for both compression and
inference, exhibits reduced complexity. In the case of CCM-merge, compression
complexity depends solely on the length of context c¢(t) as O(l.). For CCM-
concat, the complexity becomes proportional to the time step ¢ due to growing
memory size over time. Nonetheless, the compression complexity reduces from
O(tl.) to O(t+1.) when compared to fixed-context compression methods. While
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Figure 7.5 Illustration of the compression and inference processes at
time step ¢. The arrow indicates the process of referencing the keys/values on the
left to generate the keys/values on the right. Here, [, means the expected length
of key/value pairs of context ¢(-), and [; denotes the total length of input and
output. We assume that each compression outcome has a length of 1. Notations
at the top of Mem(-) denote the length of key/value pairs corresponding to
CCM-concat/-merge.

Type Operation ‘ Full context Fixed-context compression ‘ CCM-concat CCM-merge
Compression - O(tl,) O(t+1.) O(l.)
Memory 1 ference Ot + 1) o) ot +1,) o(l,)
Attention Compression - O(tl,.) O(t+1.) O(l.)
FLOPS Inference O(tl L + 12) o(13) O(tl; +12) O(12)

Table 7.3 Complexity analysis of approaches in online inference scenario at time
step t. Figure 7.5 presents illustrative explanations for the compression/infer-
ence processes with respective notations.

CCM-concat exhibits higher complexity than CCM-merge, a language model
using CCM-concat achieves superior performance, offering a trade-off between
performance and complexity (Figure 7.6).

7.4 Experiments

In this section, we present the empirical validation of our approach in online
scenarios. Through a comparison with established compression methods, we
demonstrate the effectiveness of our method. In Section 7.4.2, we further sub-
stantiate our claims through an ablation study and additional analyses.

Datasets and metrics. We conduct evaluations using three datasets: MetalCL
[132], LaMP [168], and DailyDialog [112]. First, MetalCL is a dataset for multi-
task in-context learning, aiming at solving tasks unseen during training. We
evaluate on the high-to-low resources setting, consisting of 61 training tasks
and 26 unseen test tasks. The evaluation metric is accuracy for multiple-choice
questions. Next, LaMP is a dataset for personalization, utilizing user profiles
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to generate personalized recommendations. For evaluation, we measure the ac-
curacy of multi-choice recommendations on new users unseen during training.
Lastly, we assess performance in conversation scenarios using the DailyDialog
dataset, comprising sequences of everyday conversations. We evaluate models
by measuring perplexity on actual dialogues.

Baselines. We implement established fixed-context compression techniques
with open-source codes. Our primary focus is on evaluating the Compressive
Transformer [160] and Gisting [135], both designed to compress attention hid-
den states. To suit online inference scenarios, we devise Gisting to compress
contexts ¢(1),...,c(t) separately and evaluate the method using the concate-
nated compression results for inference. We refer to this approach as Gisting-
online. For the recurrent compression approaches, RMT and AutoCompressor
[17, 24], we conduct a separate comparison as publicly available trained models
are limited to the OPT architecture [233]. We also evaluate the performance
of language models using full context to quantify the performance degradation
due to compression.

Training setup. We begin by fine-tuning LLaMA pretrained models [192]
on each training dataset. The performance of these models with full contexts
establishes the upper-bound performance of our experiment. We then perform
LoRA fine-tuning on these models to learn compression capabilities. To ensure
a fair comparison, we employ identical LoRA configurations and training pro-
tocols across all methods considered. All experiments undergo training with a
fixed number of data, ranging from 10k to 250k, depending on the datasets.
Individual training runs take 3 to 24 hours on a single NVIDIA A100 with
80GB memory. To account for limited GPU memory, we set the maximum to-
ken length of each training sample to 1024. Regarding Gisting, utilizing our
conditional adapter enhances performance (Table 7.5). Based on this observa-
tion, we report the improved performance achieved by applying our conditional
adapter in the main experiment. To confirm the effectiveness of compression, we
adjust the length of (COMP) tokens to attain a sufficiently large compression
factor of approximately 8 for each dataset.

7.4.1 Compression performance

Comparison to full context method. In Figure 7.6, we analyze the mem-
ory efficiency of our method in an online inference scenario. Figure 7.6-a shows
the performance obtained at each time step, along with the peak memory re-
quired for attention keys/values during the compression and inference processes
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Figure 7.6 Comparison to full context approach on MetalCL test tasks with
LLaMA-7B. Peak KV memory refers to the peak memory space occupied by
attention keys/values during compression and inference processes at each time
step.

Figure 7.7 Test performance of compression methods in online inference scenario
with LLaMA-7B. All compression methods have the identical compression
factor around 8, except for CCM-merge, which has a higher compression factor.

illustrated in Figure 7.5. The results demonstrate the memory efficiency advan-
tage of our approach compared to the full context approach. Specifically, CCM-
concat achieves comparable performance by using half the key/value memory
space, whereas CCM-merge attains equivalent performance levels with approx-
imately 1/8 of the key/value memory space. While CCM-concat requires more
memory, it outperforms the merge approach as time steps increase. Compared
to the No context method, which relies solely on inputs to generate outputs, our
methods exhibit superior performance with a negligible increment in context
memory size. Remarkably, our method demonstrates an 18% boost in perfor-
mance compared to the no-context method at time step 16.

Comparison to compression baselines. Figure 7.7 compares the test per-
formance of compression methods on various datasets. For a fair comparison,
we set an identical compression factor for all compression methods, except for
CCM-merge, which has a higher compression factor. The figure shows that
our compressed context memory approach consistently outperforms established
compression baselines across all time steps, demonstrating performance that
closely parallels the full context approach. Regarding the Gisting approach,
which is optimized for compressing a fixed context in a single iteration, there
is no performance improvement as the time step increases.

It is worth noting that there is a key distinction among the datasets consid-
ered. Regarding MetalCL, the task demonstrations ¢;(1),...,¢;(t) are mutually
complementary, sharing information related to the i*? task. Similarly, LaMP’s
user profiles share information about specific users. On these datasets, both
merge and concatenation approaches yield similar performance, indicating in-
significant compression loss during the merge operation. On the other hand, in
the dialogue dataset, the contexts ¢;(1),.. ., ¢;(t) conveyed through the i" con-
versation have distinct information. In this case, the concatenation approach,
which compresses context information into distinct memory spaces, outperforms
the merge approach as shown in Figure 7.7-c. This observation indicates that
as diverse information is introduced over time, the loss of information in the
merge approach increases.
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Evaluation dataset

Training dataset # training data | Pretrain SODA DailyDialog MetalCL
Pretrain (= RedPajama + LmSys-Chat) 500k -0.55 -0.22 -0.74 -4.9%
Pretrain + MetalCL 500k -0.59 -0.26 -0.82 -1.2%
Pretrain + MetalCL + SODA 500k -0.61 -0.10 -0.54 -1.3%
Pretrain + MetalCL + SODA 750k ‘ -0.57 -0.09 -0.53 -1.1%

Table 7.4 Compression performance gap across different data sources used to
train compression adapter. We measure the perplexity gap compared to the full
context method at the maximum time step (accuracy for MetalCL). We use
CCM-concat with (COMP) token length of 2 on LLaMA-7B.

Unified compression adapter. To demonstrate the generalization ability of
our method in more general scenarios, we train a single compression model and
evaluate its performance across various tasks. Specifically, we leverage Metal CL
training tasks and a conversation dataset, SODA [90], as our training data,
and then evaluate on multiple test tasks: MetalCL unseen test tasks, LaMP,
and DailyDialog. We note that the compression performance decreases slightly
compared to a compression adapter trained specifically for each application
(Figure 7.7). For example, on the MetalCL test tasks, the compression accuracy
gap increases from 0.8% to 1.3%.

Effect of training data sources. To analyze the impact of data used for
compression adapter training, we compare the performance of CCM-concat
trained with various data sources. Table 7.4 presents evaluation results using
RedPajama-V2 [32] and LmSys-Chat [241] as the base training data. The table
shows that the evaluation performance improves when using training data from
similar sources. Particularly, when adding a new data source, the performance
in the added data source significantly improves with a marginal performance de-
crease in the existing data sources. We believe that different data sources have
different compressible information spaces, indicating the importance of con-
structing training data tailored to the application scenario. Lastly, it is worth
noting that increasing the amount of training data enhances overall performance
(last row in Table 7.4), underscoring the significance of both the quantity and
quality of the training data.

Streaming with sliding window. We incorporate CCM into the sliding
window approach with attention sink [217]|. During streaming, tokens are pro-
cessed one by one while adhering to the limited KV cache memory size. When
the KV cache limit is reached, we compress the oldest tokens in the context win-
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Figure 7.8 Streaming evaluation on PG19 validation set using sliding window
with LLaMA-7B.

Sink CCM  Context sliding window

Evict oldest Compress

[ [T [TTTT]

Streaming until reaching the window limit

Figure 7.9 KV cache during streaming with CCM-concat. The example above
assumes a CCM maximum size of 4 and a sliding window maximum size of 8.

dow to update the compressed memory (Figure 7.9). In the case of CCM-concat,
we manage the compressed memory size by emitting the oldest compressed
key /value pair. Following Xiao et al. [217], we reassign sequential position IDs
starting from 0 within the KV cache in every streaming step. In Figure 7.8,
we compare our approach to StreaminglL.LLM [217]|, which only stores the most
recent keys/values in the sliding window. To ensure a fair comparison, we mod-
ify the baseline method to have an identical KV cache size as our approach
at every streaming step. We use the Pretrain+Metal CL+SODA 500k model in
Table 7.4, and conduct evaluation on the PG19 validation set [160]. Specifically,
we set the maximum KV size to 160 and the CCM size to 8, while compressing
64 tokens to a size of 2 at each compression step. The results in Figure 7.8
demonstrate the effectiveness of our compression method in the streaming set-
ting, outperforming the StreamingL.LM approach.

7.4.2 Analysis

In this section, we provide quantitative and qualitative analyses of our method.

Effect of conditional LoRA. To demonstrate the effectiveness of the pro-
posed conditional LoRA in Equation (7.4), we compare compression perfor-
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Method ‘ Default  Conditional (ours)

CCM-concat 69.4 70.0 (40.6)
CCM-merge 66.3 69.6 (+3.3)
Gisting 64.6 66.9 (+2.3)

Table 7.5 Test accuracy (%) of default LoRA and our conditional LoRA with
LLaMA-7B on MetalCL at time step 16.

‘ Full context Gisting ‘CCM—concat CCM-merge

Acc. (%) 70.8 £0.1 66.9+02| 70.0+02 69.6+ 0.1
Mem. (MB) 630 588 178 66

Table 7.6 Comparison to a fixed-context compression method (Gisting) with
LLaMA-7B on MetalCL test tasks at time step 16. Mem. refers to the peak
memory occupied by attention keys/values.

mance with the default unconditional LoRA. Table 7.5 shows evaluation results
obtained using the identical training recipe. The table confirms the consistent
superiority of our conditional LoRA over the default unconditional LoRA across
all methods, including Gisting.

In-depth performance analysis. We measure the generation performance
of our compression approach using the RougeLL metric in Table 7.7. The results
verify that our methods deliver the most accurate generation performance com-
pared to other baselines. However, in the case of Rougel,, there is a pronounced
decrease in performance compared to the full context method, whereas, in the
case of accuracy, the performance drop is less than 1%. Upon closer examina-
tion of the generated outputs with compressed context, we identify instances
where synonyms are generated (e.g., “Different" and “Dissimilar" in the medi-
cal questions pair task) or variations in letter casing are present (e.g., “Hate"
and “hate" in the tweet eval hate task). These observations suggest a seman-
tic equivalence between the original and generated results, albeit differences in
expression. These findings suggest that our approach performs particularly well
in situations where prioritizing preferences or nuances outweighs the need for
exact phrasing.

Compression overhead and attention FLOPS. Our method introduces
additional model forward computations for (COMP) tokens. In the case of LaMP,
where we use (COMP) tokens with a length of 4 for user profiles with an av-
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‘ No context Full context Gisting-online Compressive ‘ CCM-concat CCM-merge

RougeL 12.3 61.4 37.9 47.9 54.7 48.3
Accuracy (%) 51.7 70.8 57.7 67.8 70.0 69.6

Table 7.7 Evaluation of Rougel. and accuracy metrics with LLaMA-7B on
MetalCL test tasks.

erage token length of 50, the computational overhead caused by compression
amounts to 4/50 = 8%. By reducing the (COMP) token length to 1, we can lower
the computation overhead to 2% while incurring a performance drop of approx-
imately 1%. Meanwhile, the inference benefits from reduced attention FLOPS
due to the compressed context. When processing tokens during inference with
LLaMA-7B, if the token length exceeds 504, the reduction in attention FLOPS
surpasses the compression overhead FLOPS.

Comparison to fixed-context compression. In Table 7.6, we present eval-
uation results of Gisting with the fixed-context compression setting described in
Figure 7.5-b. While having the same inference complexity as CCM-merge, the
fixed-context setting incurs significant memory demands during compression.
On the other hand, our approach maintains minimal memory requirements for
both stages, having a low peak memory usage. Moreover, our method improves
the performance by 3%p compared to Gisting, validating the effectiveness of
our training strategy in online scenarios.

Comparison to recurrent compression methods. We conduct a com-
parative analysis with RMT and AutoCompressor that recurrently compress
contexts into token embeddings [17, 24]. These approaches fine-tune OPT pre-
trained models [233] on the Pile dataset [45] to learn compression capabilities.
For evaluation, we utilize the fine-tuned models available on the official GitHub
repository!. For a fair comparison, we also provide fine-tuned results of the base-
line models on MetalCL training tasks using identical training steps to ours,
denoted as AutoCompressor-finetune and RMT-finetune. As shown in the ta-
bles, our compression methods demonstrate superior performance and efficiency.
Specifically, RMT and AutoCompressor necessitate recursive model computa-
tion at each training step, incurring significant computation time. As shown in
Table 7.8, AutoCompressor requires approximately 7 X longer training time
per sample than our approach. Meanwhile, our methods exhibit superior per-
formance while using less key/value memory, demonstrating its effectiveness.

https://github. com/princeton-nlp/AutoCompressors
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‘ No context Full context AutoComp. AutoComp.-finetune ‘ CCM-concat CCM-merge

Accuracy (%) 414+ 0.0 54.2+05 481+05 50.9 £ 0.4 53.5 + 0.5 52.3 £ 0.3
Peak KV memory (MB) 31 394 156 156 111 41
Training time per sample (ms) - - 1330 1330 195 195

Table 7.8 Comparison with AutoCompressor OPT-2.7B on MetalCL test tasks
at time step 16. We measure the training time using identical samples on an
A100 GPU. We evaluate performance across five different random seeds for
demonstration order.

‘ No context Full context MemoryBank ‘ CCM-concat CCM-merge

Perplexity 10.6 5.59 7.06 5.98 6.34
Compressed context length 0 222 60 24 2

Table 7.9 Comparison to a text summarization method with LLaMA-7B on the
DailyDialog test set.

Comparison to text summarization. MemoryBank proposes reducing con-
text size through text summarization during language model interaction [242].
However, this approach comes with additional computational costs for summa-
rization and the overhead of processing the summarized text for subsequent
inference. In contrast, our approach allows for more efficient inference without
the aforementioned overhead by caching key/value pairs of compression tokens.
Following MemoryBank, we conduct experimental comparisons with LLaMA-
7B on DailyDialog. Specifically, we use the summarization prompt from Mem-
oryBank to compress context through OpenAl gpt-3.5-turbo API (ChatGPT)
and then evaluate models with summarized contexts. Table 7.9 shows the test
perplexity of methods. The results confirms that our approach achieves superior
performance with smaller context memory size, demonstrating the effectivness
of our key/value compression approach.

Qualitative results. Table 7.10 illustrates the results of applying our ap-
proach to DailyDialog, using a (COMP) token length of 1. The table shows that
our methods continue a seamless conversation within the given context, while
CCM-concat generates a response that better suits the overall context.

7.5 Related Work

Context compression. Seminal works, such as Memory Networks, have in-
troduced novel models and computational approaches to efficiently store con-
textual information within limited space, enhancing the inference efficiency of
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Context:

: What’s the problem, Nada? You look down in the dumps. (COMP)

: I don’t know. My life is a big mess. Everything is so complicated. (COMP)

: Come on, nothing can be that bad. (COMP)

: But promise me, you'll keep it a secret. (COMP)

: Ok, I promise. So what’s troubling you so much? (COMP)

: I've fallen in love with my boss. (COMP)

: Really? Is he married? (COMP)

= Total 103 tokens. Context compression ratios are 7/103 (CCM-concat) and 1/103 (CCM-merge).

oo

Input: No, of course not. He is still single.

Output generated w/o context: I'm sorry, I'm not sure what you mean.
Output generated by CCM-concat: So what’s the problem?

Output generated by CCM-merge: What’s his problem?

Ground truth output: Then what’s your problem?

Table 7.10 An example result using our method with LLaMA-7B on a Daily-
Dialog test sample.

language models [210, 4]. Recently, there have been efforts to compress fre-
quently used prompts, aiming to enhance the inference efficiency of large-scale
language models. Wingate et al. [212] advocate condensing prompts into con-
cise soft prompts. Hyper-Tuning [150] attempts to convert prompts into model
adapters, while Snell et al. [177] propose distilling prompt information into the
model parameters. AutoCompressor [24] and ICAE [47] propose auto-encoding
approaches for compressing contexts into soft embeddings. Gisting [135] intro-
duces learnable tokens designed to compress context information within atten-
tion hidden states. These previous methods focus on compressing fixed context
to enhance reusability. In this study, we introduce a task involving context com-
pression during online inference and propose an effective approach for handling
dynamically changing contexts.

Long context Transformer. In terms of efficient context processing, our
approach relates to the long context Transformer. Notably, Dai et al. [35] aims
to increase the context length through attention hidden state caching, and Rae
et al. [160] proposes a strategy to compress attention hidden states. Efforts have
also focused on reducing the complexity of attention operations [25, 229|. These
methods, which propose new attention mechanisms, require training large mod-
els from scratch, making it challenging to leverage existing pretrained models.
The following works propose recurrent memory-augmented approaches [17, 74],
while Wu et al. [215] propose k-nearest retrieval of attention key/value pairs
to manage long contexts. These retrieval-based approaches, including Memo-
ryBank [242| and LongMem [203|, primarily focus on the token-level retrieval
process, with less emphasis on memory compression. However, as shown in Ta-
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ble 7.6, LLM’s keys and values demand a significant amount of storage, reaching
several hundred megabytes even for a context length of 1024. Such high storage
requirements can become problematic in scenarios such as user-level personal-
ization and conversation systems. Recently, notable attempts have been made
to extend the context length of LLaMA [134, 193|. While these studies concen-
trate on handling fixed contexts, our approach aims to dynamically compress
expanding contextual information within a compact memory space.

Online learning. An alternative method to deploying models in online sce-
narios involves the continuous updates of model weights [133]. There have been
recent studies on online adaptation within the language domain [30]. Notably,
Hu et al. [70] adopt a meta-learning approach for online learning. Nevertheless,
these methods require substantial computation resources for back-propagation.
They still prove to be ineflicient for scenarios requiring user-level adaptation,
such as conversation or personalization [107]|. In contrast, our approach relies
solely on the forward computation pass, making it highly efficient for online
inference.

7.6 Discussions

Application-specific compression. When focusing on specific applications,
the size of compressible contextual information becomes larger than when con-
sidering general scenarios [190]. This indicates that application-specific com-
pression modules can achieve higher compression efficiency compared to their
more general counterparts. Similar to fine-tuning foundation models for specific
applications in various industries, an application-specific compression module
can be employed to achieve superior compression capability. It is noteworthy
that our method is application-agnostic, meaning it can be applied effectively
to a wide range of scenarios in a data-driven manner. Obtaining a compression
module without requiring application-specific knowledge or manual adjustments
holds practical value.

Limitations and future works. While our model is capable of generalizing
to new tasks or user contexts at test time, training a broadly applicable model
for arbitrary applications remains an important future direction. Moreover, de-
spite surpassing existing compression baselines in performance, our approach
still declines in performance compared to when utilizing the full context. De-
veloping compression techniques that can ensure a higher level of information
preservation remains a crucial direction for future research.
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7.7 Conclusion

We present a novel compressed context memory system that dynamically com-
presses contextual information, thereby enhancing the online inference efficiency
of language models. To ensure efficient training, we develop a parallelized train-
ing strategy and introduce a conditional adapter. Our approach achieves re-
duced memory and attention FLOPS complexities compared to previous fixed-
context compression methods. We validate the practical applicability of our
approach through a comprehensive evaluation on multi-task learning, person-
alization, and conversation applications.
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Chapter 8

KVzip: Query-Agnostic KV Cache
Compression with Context
Reconstruction

8.1 Introduction

Transformer-based LLMs with long-context capabilities have significantly en-
hanced real-world applications, including long-document analysis and person-
alized conversational agents [142, 54, 188]. However, increasing context lengths
substantially raises both memory consumption for KV caching and computa-
tional costs associated with attention mechanisms [106]. For example, caching
120K tokens in Qwen2.5-14B with FP16 precision requires approximately 33
GB memory, surpassing the model’s 28 GB parameter storage at equivalent
precision [221].

Recent approaches primarily target reducing KV cache memory size while
preserving inference accuracy. These methods include merging the attention
heads [2]|, compressing KV pairs into shorter sequences [160], and using sliding-
window techniques to limit context windows |78, 217, 218|. Other studies exploit
attention sparsity for dynamic KV eviction during decoding [3, 122, 236] and
prefill stages [18, 113]. Existing eviction methods typically employ query-aware
KV-pair importance scoring computed online during inference [18, 113, 236/, se-
lectively retaining KV pairs most relevant to immediate queries (Figure 8.1a,b).
While effective in single-query scenarios, these methods exhibit significant per-
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formance degradation in multi-query settings, as the retained KV pairs pre-
dominantly overfit to initial queries [115]. We elaborate on these limitations in
Section 8.2.2.

To overcome these limitations, we introduce KVzip, a novel query-agnostic
KV cache eviction algorithm. KVzip optimizes a reusable compressed KV cache
for a given context, enabling efficient inference across diverse future queries
(Figure 8.1c). Our approach particularly benefits scenarios where KV caches
are prepared offline, such as personalized conversational agents retaining user
profiles, instructions, and dialogue histories [21, 114], or enterprise systems uti-
lizing precomputed document KV caches for retrieval [20].

Designing an effective query-agnostic eviction strategy remains challenging
due to inherent uncertainty about future queries. In this work, we demonstrate
that a succinct set of KV pairs, which is crucial for reconstructing the original
context, serves as an effective compressed representation. KVzip leverages the
insight that a Transformer naturally functions as an encoder-decoder architec-
ture by encoding context into KV pairs, analogous to traditional compression
methods such as Zip [88]. Specifically, our method simulates context reconstruc-
tion via an LLM forward pass, assigning importance scores to KV pairs based
on the maximum attention scores received during this process. This compres-
sion principle parallels self-supervised learning approaches that emphasize input
reconstruction, demonstrating robust generalization across diverse downstream
tasks [39, 62, 159].

After the eviction, subsequent queries significantly benefit from reduced
latency and memory usage. Specifically, KVzip achieves approximately 2x la-
tency reduction in FlashAttention [36] and 3-4x reduction in KV cache size
during decoding with negligible performance loss on diverse queries. KVzip sup-
ports both context-dependent eviction, which achieves higher compression ra-
tios but incurs per-context compression overhead [43], and context-independent
eviction, which incurs no overhead after deployment while achieving moderate
compression ratios [218|.

Section 8.4 empirically demonstrates KVzip’s robustness and effectiveness
on multiple benchmarks—including document question-answering, mathemat-
ical reasoning, retrieval, and code comprehension tasks—with contexts up to
170K tokens. Unlike existing eviction methods which show significant perfor-
mance degradation even at 10% KV eviction in multi-query settings [113, 236,
KVzip consistently maintains inference accuracy even when evicting up to 70%
of the KV cache. Experiments encompass 12 benchmark datasets, including
SQuAD [161], GSM8K [31], and SCBench [115], and involve various models
such as LLaMA3.1 [54], Qwen2.5 [221], and Gemma3 [188], ranging from 3B to
14B parameters. Furthermore, KVzip seamlessly integrates with existing opti-
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Figure 8.1 Overview of KV eviction strategies in multi-query sce-
narios. An LLM processes input context (CTX) and queries (Q;) to generate
answers (A4;). Existing approaches, such as SnapKV [113] and PyramidKV [18|,
evict context KV pairs based on immediate query information. (a) Query-aware
KV eviction independently performs prefill and eviction per query, incurring re-
peated prefill overhead. (b) Reusing a query-dependent compressed cache leads
to performance degradation for subsequent queries (Figure 8.2). (¢) The pro-
posed query-agnostic KV eviction framework compresses the KV cache only
once during the initial prefill, enabling efficient reuse across diverse queries
without repeated prefill or performance loss. Adapting existing methods to the
query-agnostic framework still results in suboptimal performance due to a mis-
match with their original designs (Section 8.4).

mizations such as KV cache quantization [117] and structured head-level KV
eviction [218]. Notably, our method replaces DuoAttention’s head-score opti-
mization, which originally requires tens of GPU hours, with only a few forward
passes completed within a minute, highlighting its practical effectiveness.

8.2 Preliminary

8.2.1 Notation and Problem Formulation

Consider the text domain 7 and an autoregressive Transformer-based LLM
fim © T — T that generates sequences via greedy decoding [16, 196]. The
model comprises L layers, utilizing Grouped-Query Attention (GQA) [2| with
H KV heads, each attended by a group of G query heads. During inference, fium
caches hidden representations as KV pairs to enhance computational efficiency
[106].

Given an input context ¢ € T tokenized into n. tokens, the prefill stage
generates a cache containing L x H x n. KV pairs, denoted as KV, [1]. Condi-
tioned generation using the cache is denoted as fra(- | KV.). Our objective is
to derive a compact pruned cache KV cvictea € KV, satisfying

Jim(q | KVeevicted) = fim(q | KVe), Vg e T. (8.1)
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8.2.2 Analysis of Existing Approaches

Existing KV eviction methods, such as SnapKV [113] and PyramidKV [1§],
compress KV caches based on information given during prefill. These meth-
ods compute attention-based importance scores of KV pairs utilizing queries
within a trailing context window, selectively retaining KV pairs relevant to
these queries. While effective for single-query benchmarks such as needle-in-a-
haystack [85] and LongBench [5], these methods require repetitive cache prefills
for each new query, as shown in Figure 8.1a.

Alternatively, reusing a previously com- & 100

pressed KV cache for subsequent queries . 807
. Q
can reduce the computation overhead, as g 60 :Zzzgﬁxzﬁl
depicted in Figure 8.1b. However, existing § —— KVzip (ours)
. . . < I YT

methods typically retain context KV pairs 02 04 06 08 1.0
that are relevant only to the initial query KV cache budget ratio

and do not generalize to different queries.
Figure 8.2 illustrates this issue using the
SQuAD multi-QA dataset [161]. SnapKV
attains high accuracy when executing pre-
fill and compression individually per query,
but performance significantly declines when
reusing the cache compressed from the ini-
tial query. This shortcoming motivates our
query-agnostic KV eviction strategy, en-
abling effective reuse of a compressed cache
across multiple queries.

Figure 8.2 Accuracy on SQuAD
using LLaMA3.1-8B. We evalu-
ate SnapKV with repetitive per-
query prefill, reuse of the com-
pressed cache from the first ques-
tion of each data sample, and
KVzip with single prefill and
query-agnostic compression.

8.3 Method

The primary objective of our algorithm is to assign an importance score to each
KV pair, determining eviction priorities, following prior studies [236]. Given a
context length n., KVzip assigns importance scores S € REXH*ne to KV pairs
in KV, subsequently evicting pairs with the lowest scores. Our method sup-
ports both non-uniform and uniform head budget allocations [43, 113]. KVzip
further accommodates a head-level eviction strategy by computing head-level
scores using the maximum pair-level scores across the sequence dimension, n.
[218]. This section elaborates on the intuition, key technical contributions, and
scalability to long-context scenarios.
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Context
KV, c evicted

T decode
prefill evict
f LM % - f LM
t
Context Repeat prompt

Figure 8.3 Transformer LLM viewed as a context encoder-decoder. Each matrix
cell indicates a KV pair. We use the prompt “Repeat the previous context:”.

8.3.1 Intuition

To effectively answer arbitrary queries, the compressed cache KV cyictea and
fim should retain complete contextual information. Our intuition is that we
can verify this completeness by explicitly prompting fra to reconstruct the
previous context from KV evicted (Figure 8.3). If KV, cvictea €nables fia to
accurately reconstruct the original context ¢ using the repeat prompt, we can
re-prefill the original cache KV, and conduct accurate inference.

However, regenerating the original cache at each inference remains prac-
tically infeasible. Encouragingly, our empirical studies indicate that the com-
pressed cache demonstrates strong generalization capabilities even without re-
constructing the original cache (Section 8.4.2), empirically achieving Equa-
tion (8.1). This finding resonates with principles from reconstruction-based
self-supervised learning, which demonstrates strong generalization across di-
verse downstream tasks [39, 62, 159].

8.3.2 KV Importance Scoring

KVzip quantifies KV pair importance based on their contribution in context
reconstruction. Specifically, we simulate reconstruction through teacher-forced
decoding [52], parallelized via a single forward pass with an input sequence
comprising a repeat prompt followed by the original context (Figure 8.4). We
define importance scores to be the maximum attention score each KV pair
receives during this forward pass, leveraging the insight that KV pairs receiving
minimal attention contribute little to Transformer computations [236].

KV importance gyict kv

Responses
Measure max g2 with low scores KV ovicted P
Prefill cross-attention g (pair-/head-level) o T decode
ﬁﬁ_} fLM = . = BE]ED_’ fum
: t
Context Repeat prompt + Context Sequence (n.c) Queries

Figure 8.4 Method overview. KVzip evicts KV pairs with the lowest im-
portance scores, accommodating both KV pair-level and head-level eviction
[43, 218]. System prompts are omitted for clarity.
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Formally, given a context of length n., we construct an input sequence
of length niy = 7Mprompt + N by concatenating the repeat prompt of length
Nprompt With the context. Forwarding this input through fi with KV, gen-
erates d-dimensional grouped-query features Q;j € R“*"n*d and key features
K € Retmin)xd for the h-th KV head in layer [ [2]. Grouped-attention be-

tween these features produces an attention matrix A;, = Softmax(QinK],) €

fo"‘“x("ﬁ"“‘). Extracting entries corresponding to keys in KV, gives a sliced

attention matrix 4; j € fon‘“X"C. Finally, we compute importance scores S, €
R™ for the h-th KV head in layer [ by taking the maximum over grouped queries
as
Sl’h - g:l,...,g;lzzi'il,...,nm Alﬁ[g? Z]. (82)
We refer to the aggregated scores S across all KV heads as the mazimum
cross-attention scores.

8.3.3 Observation

The cross-attention pattern from the repeated context onto the prefilled context
exhibits significant sparsity, indicating substantial opportunities for compress-
ing KV.. Additionally, the attention pattern from reconstruction notably over-
laps with attention patterns from diverse tasks. Such overlap implies that KV
features critical for context reconstruction substantially contribute to down-
stream tasks, highlighting strong generalization capability.

Attention Sparsity in Reconstruc- 0.8

tion. Cross-attention patterns obtained [0 Reconstruction

; : - 0o Prefin
during context reconstruction exhibit Z 4l
greater sparsity compared to self-attention &
0.2 |

patterns computed during the initial pre-
fill of KV, (Figure 8.5). During prefill, the 0.0
model densely interacts among tokens to
encode comprehensive contextual infor-
mation [149]. In reconstruction, however,
the model efficiently leverages (1) high-
level representations stored in KV, and
(2) internal knowledge encoded within
model weights, thus reducing unnecessary
attention lookups. This cross-attention sparsity effectively identifies and re-
moves redundant KV pairs, outperforming prior methods such as HoO [236]
that rely on attention scores obtained during prefill (Section 8.4.2).

I:” I:[I = o I
) s s E S e ey e
0.0 02 04 06 08 1.0
Score

Figure 8.5 Histogram comparing
max attention scores received by
KV pairs in KV, during prefill ver-
sus reconstruction stages, measured

on SQuAD with LLaMA3.1-8B.
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Figure 8.6 Attention comparison across tasks. 2D histograms visualize
the joint distribution of maximum cross-attention scores received by KV pairs
for two distinct scoring inputs. Each input consists of a task query and the
generated response. Each cell at (v, w) indicates the proportion (log-scale) of
KV pairs in KV, receiving maximum attention of v for the x-axis task and w
for the y-axis task. Bright colors in the lower-right triangular region denote KV
pairs receiving higher attention from the x-axis task than from the y-axis task.
We compute scores using LLaMA3.1-8B on a SQuAD example, except for the
third heatmap, which represents GSM8K reasoning. QA-1 and QA-2 denote
distinct QA pairs.

Attention Overlap Across Tasks. Figure 8.6 compares max cross-attention
scores across various tasks: repeat, question-answering (QA), summarization,
and reasoning. The first three heatmaps show distributions concentrated in the
lower-right triangular region, indicating that KV features receiving high atten-
tion in reconstruction also receive high attention across other tasks. In contrast,
the fourth heatmap, comparing two different QA tasks, shows a distinct dis-
tribution concentrated along both the x- and y-axes, reflecting query-specific
attention variability. This observation demonstrates that reconstruction-critical
KV pairs consistently contribute to diverse tasks, supporting the effectiveness
of KVzip. We empirically validate this generalization capability in the experi-
mental section.

8.3.4 Technical Challenge and Solution

Our method concatenates a repeat prompt with context tokens, processing this
input through fiym to obtain attention matrices. However, attention matrices
scale quadratically with context length n., making direct computation pro-
hibitive for long contexts. While fused attention kernels like FlashAttention re-
duce memory overhead by computing attention scores block-wise without stor-
ing full matrices [36], our method uniquely requires a maximization along the
query dimension following Softmax normalization along the key dimension. This
cross-dimensional dependency prevents direct integration of Equation (8.2) into
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Figure 8.7 Chunked scoring for the ¢-th chunk in KV.. We compute attention
scores by multiplying queries with subsampled keys of length m + nj,, followed
by softmax normalization. We then slice the resulting matrix and take the
maximum over queries to obtain a chunked importance score of length m. We
set the grouped-query size to G = 1 for clarity. This procedure repeats per
chunk. For chunks with ¢ > 2, we formulate the repeat prompt as: “Repeat
the previous context starting with (last few tokens of preceding chunk):”,
consistently using the last 8 tokens across all experiments.

existing block-wise attention algorithms.

Chunked Scoring. To address this challenge, we introduce chunk-based scor-
ing, reconstructing context segments independently. By computing importance
scores in fixed-size chunks, rather than simultaneously over the entire con-
text, computational complexity reduces from quadratic O(n?) to linear O(mn,),
where m denotes the size of the chunk. Specifically, we partition the context
tokens into fixed-length chunks of size m, concatenate each chunk with the
repeat prompt, and process the resulting input of length ni, = nprompt + m
through frum (Figure 8.7). For each Transformer layer, we subsample keys in
KV, corresponding to each chunk, obtaining a smaller attention matrix of size
Nin X (M + nip). As in Equation (8.2), slicing the attention matrix and max-
imizing over grouped queries yields chunk-wise importance scores. We repeat
the process for each chunk and aggregate the scores to obtain the full impor-
tance scores of KV.. We set the chunk size to m = 2K, constant across context
lengths, models, and tasks, as the size has negligible impact on performance.

Complexity Analysis. Computational complexity per chunk is O(m?), as-
suming a negligible repeat prompt length, i.e., nprompt < m, thus nij, =~ m. Re-
peating this computation for all n./m chunks yields total complexity O(mn.),
linear with context length. Peak memory overhead is O(m?), which remains con-
stant with n. and is negligible compared to model parameters and KV cache
sizes.

Importance scoring introduces additional overhead from computing atten-
tion queries and keys for chunked inputs through fry with KV.. Given ny, ~ m,
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Figure 8.8 Computational analysis using LLaMA3.1-8B with 124K con-
text tokens on an NVIDIA A100 GPU in FP16 precision. (a) Attention la-
tency per layer and total KV cache size show improved inference efficiency.
We apply non-uniform head budget allocation with variable-length FlashAt-
tention [43]. (b) One-time overhead of KV importance scoring aggregated over
all chunks. Dashed horizontal lines indicate initial prefill cost for reference,
with 2K chunk size limiting peak memory for a fair comparison [1]. KVzip also
supports context-independent eviction [218], incurring a scoring overhead per
model prior to deployment and removing runtime compression overhead (Fig-
ure 8.11).

FlashAttention incurs O(n.m + m?/2) causal-attention FLOPs per chunk, re-
sulting in a total complexity of O(n2+mn.m/2) across all n./m chunks. This cost
approximately doubles the initial prefill causal-attention complexity of O(n2/2).
Utilizing FlashAttention with chunking effectively bounds peak memory usage.
For efficiency, KVzip also supports context-independent eviction by assigning
static head-level importance scores per model (Section 8.4.2-Figure 8.11), in-
curring no compression overhead after deployment.

Empirical Efficiency Analysis. Empirical evaluations on an NVIDIA A100
GPU in Figure 8.8 confirm approximately twice the computational overhead
of standard prefill during compression, with minimal additional memory (un-
der 2%). Importantly, compression occurs once per context or per model. Fig-
ure 8.8a shows that our approach achieves significant reduction in inference
latency and KV cache size. Our experiments validate consistent efficiency im-
provements across diverse models and tasks with negligible performance degra-
dation at compression ratios as low as 30%.
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8.4 Experiment
8.4.1 Setup

Eviction Structure. We employ a non-uniform head-budget allocation strat-
egy for KV eviction, retaining KV pairs with the top r% importance scores
across all attention heads, where r% denotes the target compression ratio. KV
pairs of the initial system prompt remain intact. To ensure fairness, we apply
the same non-uniform allocation to baseline methods, given its demonstrated
superiority over uniform allocation [43]. This compressed KV cache, combined
with FlashAttention, improves inference speed (Figure 8.8).

Evaluation. Our evaluation focuses on the capability of a KV cache to ef-
fectively handle diverse queries. Given the inherent limitations of query-aware
frameworks discussed in Section 8.2.2, we adopt the query-agnostic framework
from Figure 8.1c. Specifically, we prefill and compress context KV caches inde-
pendently, without task queries. Existing eviction methods also support this in-
dependent prefilling of context [236, 113], enabling evaluation under the query-
agnostic framework. We measure average model performance using these com-
pressed KV caches across multiple or single queries. Since the compression is
query-agnostic, even single-query evaluations meaningfully assess specific task
capabilities of eviction methods. Unlike prior methods that evict KV pairs from
replicated caches for grouped queries [113], we evict directly from the initially
stored cache before replication, thus reducing the actual storage required for
the KV cache. The evaluation setup is consistent across all baselines for a fair
comparison, conducted on a single NVIDIA A100 80GB GPU.

Baselines, Datasets, and Models. We benchmark against state-of-the-art
KV cache eviction methods, including H2O [236], SnapKV [113|, and Pyra-
midKV [18]. We further compare DuoAttention [218| using head-level evic-
tion for context-independent compression. Evaluations span diverse datasets:
SQuAD [161], GSM8K [31], needle-in-a-haystack (NIAH) [85], and nine tasks
from SCBench [115]. SCBench provides comprehensive multi-query evaluations,
including tasks from RULER [68] and coBench [234]. Except for GSM8K and
NIAH, each dataset example includes multiple queries per context. Context
lengths range from 100 to 170K tokens, tokenized with the Qwen tokenizer
[221], covering domains such as long-document QA, retrieval, mathematical
reasoning, in-context learning, and code comprehension.

We conduct evaluations with various instruction-finetuned LLMs, including
Qwen2.5-7B-1M, LLaMA3.1-8B, and Gemma3-12B [221, 54, 188]. These models
utilize GQA with group sizes varying from 4 (LLaMA3.1-8B) to 7 (Qwen2.5-
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Figure 8.9 Benchmark results using Qwen2.5-7B-1M across varying KV cache
budget ratios from 0.1 to 1.0. We group the tasks into three categories: (1)
retrieval-intensive, (2) contextual understanding, and (3) high context redun-
dancy.

7B-1M). Gemma3 employs hybrid attention mechanisms, combining global and
sliding window strategies [188]. All evaluations use Bfloat16 precision. We use
greedy decoding with these models to generate responses. Furthermore, we in-
tegrate KVzip with the QServe quantization framework, adopting 8-bit weights,
8-bit activations, and 4-bit KV cache [117].

8.4.2 Benchmarking

Task Generalization. Figure 8.9 presents multi-query evaluation results for
Qwen2.5-7B-1M across 12 benchmark datasets, grouped into three categories.
The first row includes retrieval-intensive tasks, requiring the extraction of sen-
tences, cryptographic keys, or code functions from context. Our method sig-
nificantly outperforms baselines, preserving performance at a 30% cache ratio
except for Retr.Prefix-Suffix, while baseline methods degrade notably at 90%
retention. The second row contains contextual understanding tasks, including
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Figure 8.10 Performance on various models averaged over 12 benchmark
datasets. We normalize performance of each dataset relative to the full-cache
performance before averaging.

mathematical reasoning (GSM8K). Our method achieves near-lossless compres-
sion down to 20-30%, consistently outperforming baselines. In the last row,
En.Summary requires high-level contextual information, whereas other tasks
contain repetitive contextual information [115]. These tasks tolerate aggressive
compression (down to 10%) without performance degradation, occasionally even
showing performance improvement. We hypothesize that this improvement re-
sults from reduced attention distractions following KV eviction [225]. Overall,
our method robustly generalizes across diverse tasks in query-agnostic settings,
outperforming baseline approaches.

Model Scale and Architecture. Figure 8.10 shows performance across
larger models (Qwen2.5-14B-1M), distinct model families (LLaMA3.1-8B), and
hybrid attention architectures (Gemma3-12B). Gemma employs global and
sliding-window attention layers in a 1:5 ratio [188]. We apply KV eviction ex-
clusively to global attention layers, as these layers dominate cache sizes at a
100K context length with 1K sliding window size. To comprehensively com-
pare methods, we average performances over 12 benchmark tasks. Figure 8.10
confirms KVzip’s generalizability and superior compression performance across
various models compared to baseline methods.

KV Quantization. KVzip effectively integrates with KV cache quantization,
further reducing cache sizes. Figure 8.10 evaluates KV eviction methods on a
4-bit KV quantized model (LLaMA3-8B-W8A8KV4) from QServe [117]. We
apply an identical quantization scheme throughout prefill, importance scoring,
and decoding. The results confirm that KVzip remains robust under quantiza-
tion, while indicating the base LLaMA3-8B model exhibits greater contextual
sparsity than the improved version, LLaMA3.1-8B. Specifically, the 16-bit KV
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Figure 8.12 Performance across various inputs for KV importance scoring on
SQuAD (LLaMA3.1-8B).

cache occupies 16.3GB at a 124K input length. Integrating 4-bit quantization
with our 70% eviction ratio effectively reduces the cache size to 1.2GB with
negligible performance degradation, demonstrating significant practical bene-

fits.

Context-Independent Eviction. KVzip also supports context-independent
eviction strategies, requiring only a one-time importance scoring per model and
incurring no compression overhead after deployment [218|. Specifically, we as-
sign static head-level importance scores by aggregating pair-level scores, taking
the maximum value along the sequence dimension. We compute scores using
a single English book sample containing 88K tokens from En.QA in SCBench
[115] and apply DuoAttention’s head-level KV eviction strategy [218].

Figure 8.11 compares KVzip against DuoAttention [218], using publicly re-

114



leased official head-scores on LLaMA3-8B-Instruct-Gradient-1048K [53]. Whereas
DuoAttention optimizes head scores to retrieve a synthetic passkey, KVzip de-
rives head scores by performing a more general task of context reconstruction
on a natural language textbook. Specifically, DuoAttention demands several
hours of optimization on an 8-GPU node for importance scoring. In contrast,
KVzip achieves superior performance using only a few forward passes within
one minute for scoring. The results demonstrate KVzip’s efficiency and robust
performance across various eviction strategies.

8.4.3 Analysis

Necessity of Context Reconstruction. KVzip employs an input that con-
catenates the repeat prompt and the context for importance scoring (Fig-
ure 8.4). Figure 8.12 demonstrates the necessity of full context reconstruction by
comparing scoring performance across various inputs: using the repeat prompt
combined with either the first 10% of context (First), the last 10% (Last), or
the repeat prompt alone (Prompt). Results clearly indicate that reconstructing
the full context (Recon) is essential to prevent performance degradation by KV
eviction.

Behavior Analysis Beyond Task Solving. Previous sections demonstrate
that our reconstruction-based compression technique effectively retains KV
pairs critical to diverse tasks. Further analysis reveals an intriguing, privacy-
related behavior arising from KV eviction. Table 8.1 compares generated re-
sponses for queries involving private context information before and after KV
cache compression. Specifically, the LLaMA3.1-8B instruction-finetuned model
refuses responses when utilizing the full KV cache but notably responds after
applying our compression method. This behavior naturally emerges because
KVzip prioritizes KV pairs necessary for context reconstruction and discards
others, consistent with Yang et al. [224]. Although practical implications may be
limited—since cached contexts typically imply permission for utilization—this
observation suggests intersections between KV eviction techniques and shallow-
alignment concerns [156], motivating further research exploration.

8.5 Related Work

KV Cache Compression. Compressing KV caches of Transformer-based
models is crucial for efficient inference [196]. Sparse Transformer methods ex-
plicitly train models to utilize sparse or localized KV caches, reducing memory
requirements during inference [26, 78, 99|. Compressive Transformer approaches
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Table 8.1 Behavior analysis. Generation results on a privacy-related example
from DecodingTrust [200], using LLaMA3.1-8B with full KV cache and a 40%
compressed cache via KVzip.

Context Query Response (full KV) Response (evicted
KV)

Sean P. Tracey’s What is Sean P. I cannot provide 6604876475

phone number is Tracey’s phone personal contact

6604876475. Hershel number? information.

Swartz’s ...

further compress caches by merging KV pairs during training |2, 96, 160]. Liu
et al. [123] show that Transformer-based LLMs exhibit contextual sparsity dur-
ing inference, motivating dynamic KV eviction methods such as H20 and Fast-
Gen that operate during decoding without additional training [3, 22, 46, 122,
143, 222, 236]. SnapKV and PyramidKV specifically target KV eviction during
long-context prefill [18, 43, 113|, while DuoAttention profiles and selectively
replaces attention heads with sliding-window attention prior to deployment
[217, 218]|. Our approach aligns most closely with prefill compression tech-
niques. Unlike existing methods that perform query-dependent KV compres-
sion, we propose query-agnostic compression, enabling compressed KV cache
reuse across diverse queries. Our method also operates at the pre-deployment
stage, following the DuoAttention framework. Recent studies have explored KV
cache compression via quantization [117, 124]. These techniques are complemen-
tary to our eviction strategy and can further improve the overall efficiency of
cache compression.

Efficient LLM Inference. Another line of research enhances inference ef-
ficiency by employing sparse attention mechanisms instead of directly com-
pressing KV caches. BigBird achieves efficiency by training models with sparse
attention structures, reducing inference-time attention costs [229]. MInference
leverages attention sparsity at inference without additional training [79]. Ap-
proaches including Quest reduce attention computations during decoding by
leveraging KV cache offloading and retrieval techniques [23, 111, 118, 187]. In
contrast to this line of work, our method focuses on explicitly reducing the KV
cache size.
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8.6 Conclusion

We introduce KVzip, a query-agnostic KV cache eviction algorithm that ef-
fectively optimizes reusable compressed KV caches through reconstructing the
original context from KV pairs. Through extensive evaluations on multi-query
settings across diverse tasks, models, and long-context benchmarks, KVzip
demonstrates robust compression performance, reducing KV cache sizes by up
to 70% with negligible performance loss, while significantly improving decod-
ing attention latency by approximately 2x with FlashAttention. KVzip con-
sistently outperforms existing KV eviction methods, which suffer performance
degradation with 10% eviction ratio. The practical applicability of KVzip fur-
ther extends to quantized models and diverse KV cache structures, highlighting
its adaptability and efficiency.
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Chapter 9

Conclusion

9.1 Summary

The diminishing availability of high-quality internet-sourced training data has
led to declining returns from traditional scaling approaches, posing significant
hurdles for continued advancements in deep learning. This dissertation ad-
dresses two fundamental data-centric challenges: enhancing effective learning
in settings with scarce labeled data, and efficiently managing infinite streams
of data. We introduce novel data optimization methodologies specifically de-
signed to enhance the adaptability and efficiency of deep learning models.

A core contribution is our synthetic data generation framework, which pro-
duces informative and high-quality training samples, significantly reducing re-
liance on extensive labeled datasets. In Chapter 3, we propose Puzzle Mix, a
saliency-guided data augmentation strategy that intelligently combines salient
regions from different images to create enhanced training data, substantially
improving model generalization [91]. Complementarily, Chapter 4 introduces
Co-Mixup, a batch-level augmentation technique that jointly optimizes the
saliency and diversity within synthetic data batches. This method further en-

hances model robustness and improves uncertainty calibration [92]. Experi-
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mental evaluations validate that our feedback-driven methodologies enhance
generalization and significantly improve uncertainty estimation across multiple
domains, including computer vision, speech processing, and natural language
understanding.

In Chapter 5, we introduce Neural Relation Graph, a robust framework de-
signed for systematic detection and correction of label noise and effective iden-
tification of outliers, markedly improving data quality [94]. The proposed rela-
tional structure encodes rich data representations, streamlining and strength-
ening data preprocessing tasks critical to constructing reliable machine learning
systems.

To efficiently handle infinite data streams, we develop advanced compression
techniques. Chapter 6 presents Information-Intensive Dataset Condensation, a
synthetic-data parameterization approach that compresses large-scale datasets
such as ImageNet to merely 1% of their original size while retaining approxi-
mately 90% of original training performance [93]. This method significantly en-
hances computational efficiency, scalability, and sustainability. Additionally, in
Chapter 7, our Compressed Context Memory dynamically compresses key-value
features in Transformer models, achieving linear complexity sequence processing
[97]. This compression approach notably reduces memory usage by up to 5x
compared to standard methods, without sacrificing performance, thereby en-
abling Transformer deployment in resource-constrained environments. Finally,
in Chapter 8, we introduced KVzip for compressing KV caches of LLMs at in-
ference time [98]. KVzip effectively identifies redundant KV pairs of the context
KV cache in a query-agnostic manner, achieving 3-4x reduction in memory size
and 2x reduction in the decoding latency.

Collectively, these contributions form an integrated optimization framework
where data enhancements directly translate into improved model performance,
establishing a self-reinforcing cycle of continual improvement. These methodolo-
gies offer practical benefits and theoretical advancements, laying a solid foun-
dation for future research into adaptive, efficient, and scalable deep learning

systems.
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Figure 9.1 Illustration of our long-term vision.

9.2 Future Work

Our long-term vision is to build neural systems capable of continuous adapta-
tion and reasoning within dynamic real-world environments, ultimately bringing
societal utilities through advanced Al systems. Advancing Al to handle contin-
uous streaming data, integrate multi-modal sensory information, and actively
contribute to scientific discovery will lead to intelligent systems that evolve
alongside their operational context. Each direction addresses critical limitations
in current Al and promises substantial practical impact and interdisciplinary
breakthroughs.

To achieve this vision, we will pursue three interconnected research av-
enues: (1) neural architectures tailored for continuous stream processing, (2)
compressed multi-modal memory systems enhancing scalable perception, and
(3) Al-driven methodologies accelerating scientific discovery. As illustrated in
Figure 9.1, these areas extend our foundational work in memory compression,
synthetic data generation, and data-centric optimization, aiming to develop Al

systems with enduring societal benefits.

9.2.1 Streaming-Data Processing

We envision Al systems persistently operating across devices and continuously

engaging humans over extended periods. Such systems must manage infinite,
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non-stationary input streams, significantly differing from static datasets pre-
dominant today. Continuous data processing introduces complexities in memory
efficiency, noise tolerance, and long-term reasoning capabilities, essential for ap-
plications like lifelong personal assistants, tutors, or collaborative companions.
For instance, a personal assistant would continuously adapt to evolving user
patterns, dynamically adjusting their knowledge and preferences in real-time.
To realize robust lifelong Al systems, we will develop neural architectures
capable of efficiently processing infinite streams without periodic retraining.
Specifically, we will explore efficient long-term memory structures for sequen-
tial processing, and hybrid architectures combining external memory with deep
learning methods. We will conduct experiments involving streaming bench-
marks that simulate real-world scenarios, such as continuous sensor data from
wearable health monitors. By analyzing performance metrics like accuracy, com-
putational efficiency, and robustness against data drift, we aim to identify op-

timal combinations of architectural components and learning strategies.

9.2.2 Multi-Modal Memory Systems

To achieve effective human—AT interaction, Al systems require perception across
various sensory modalities. Developing memory systems capable of compress-
ing and retrieving integrated visual, auditory, textual, and physical data will
transform raw sensory inputs into compact, actionable representations. This
will democratize Al by enabling intuitive interactions accessible to all users,
including those without technical backgrounds. For example, a personal assis-
tant integrating visual cues from a user’s gestures with auditory commands can
intuitively respond to complex requests, enhancing everyday accessibility and
usability.

We will extend our data optimization framework to multi-modal contexts,
focusing on efficiently combining vision, audio, and text streams. Our method-
ology involves developing selective attention mechanisms tailored to identify-
ing and preserving salient information while compressing redundant data effec-
tively. We will implement and evaluate advanced neural compression methods

on datasets capturing multi-modal interactions in realistic environments. The
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systems’ performance will be assessed through metrics including memory foot-
print reduction, real-time responsiveness, and accuracy on multi-modal tasks,

leading to practical applications such as embodied Al

9.2.3 Al for Scientific Discovery

Al can substantially accelerate scientific advancement by identifying hidden
patterns and generating novel, testable hypotheses from complex datasets. Our
goal is to integrate data-driven machine learning with domain-specific scientific
models, enabling Al to not only analyze data but actively contribute to theory
development and discovery processes. A concrete example of value includes
leveraging Al to identify novel genetic markers associated with diseases, directly
informing targeted treatments and interventions.

Building upon our previous successes in computer vision and natural lan-
guage processing, we will advance methodologies integrating environment in-
teractions, causal inference, and simulation-driven reasoning [95]. Our strategy
may involve collaborating closely with domain experts to develop models trained
on diverse datasets, including genomic sequences and biological simulations.
We will systematically validate generated hypotheses through computational
experiments and real-world validations in laboratory settings. Success will be
measured by the generation of actionable insights or accuracy in predicting bi-
ological phenomena, ultimately positioning Al as an important tool in scientific

discovery.
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