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Abstract

Diagnosing and cleaning data is a crucial step for building robust machine learning
systems. However, identifying problems within large-scale datasets with real-world
distributions is challenging due to the presence of complex issues such as label
errors, under-representation, and outliers. In this paper, we propose a unified
approach for identifying the problematic data by utilizing a largely ignored source
of information: a relational structure of data in the feature-embedded space. To
this end, we present scalable and effective algorithms for detecting label errors and
outlier data based on the relational graph structure of data. We further introduce a
visualization tool that provides contextual information of a data point in the feature-
embedded space, serving as an effective tool for interactively diagnosing data.
We evaluate the label error and outlier/out-of-distribution (OOD) detection perfor-
mances of our approach on the large-scale image, speech, and language domain
tasks, including ImageNet, ESC-50, and SST2. Our approach achieves state-of-the-
art detection performance on all tasks considered and demonstrates its effectiveness
in debugging large-scale real-world datasets across various domains. We release
codes at https://github.com/snu-mllab/Neural-Relation-Graph.

1 Introduction

Identifying problems within datasets is crucial for improving the robustness of machine learning
systems and analyzing the model failures [43]. For instance, identifying mislabeled or uninformative
data helps construct concise and effective training datasets [31], while identifying whether test data is
OOD or corrupted allows for more accurate model evaluation and analysis [52].

In recent years, efforts have been made to identify problematic data by utilizing unary scores on
individual data from trained models, such as estimating data influence [22], monitoring prediction
variability throughout training [50], and calculating prediction error margins [32]. However, identify-
ing such data can be challenging, particularly when dealing with large-scale datasets from real-world
distributions. In real-world settings, datasets may have complex problems, including label errors,
under-representation, and outliers, each of which can lead to the model error and prediction sensitivity
[23]. For example, Figure 1 shows that a neural network exhibits low negative prediction margins
and high loss values for both a sample with label error and outlier data. This observation indicates
that previous unary scoring methods may have limitations in discerning whether the problem lies
with the label or the data itself.

In this work, we propose a unified framework for identifying label errors and outliers by leveraging
the feature-embedded structure of a dataset that provides richer information than individual data alone
[45, 34]. We measure the relationship among data in the feature embedding space while comparing
the assigned labels independently. By comparing input data and labels separately, we are able to

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/snu-mllab/Neural-Relation-Graph


0.0 0.1 0.2 0.3
−1.00
−0.75
−0.50
−0.25
0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
−1.00
−0.75
−0.50
−0.25
0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
−1.00
−0.75
−0.50
−0.25
0.00

0.25

0.50

0.75

1.00

R
el

at
io

n
av

er
ag

e

Relation variance

Sorrel (clean) / Margin: 0.87, Loss: 0.1 Coil (label error) / Margin: −0.89, Loss: 4.1 Envelope (outlier) / Margin: −0.84, Loss: 3.6

Figure 1: ImageNet samples with their labels and the corresponding relation maps by an MAE-Large
model [13]. We report the prediction margin score (∈ [−1, 1]) and the loss value next to the label.
The relation map draws a scatter plot of the mean and variance of relation values of a data pair
throughout the training process. Here the color represents the relation value at the last converged
checkpoint. We present the detailed procedure for generating the relation maps in Section 3.6.
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Figure 2: The conceptual illustration of the conventional approaches (left) and our proposed approach
(right). In the relation graph, positive edges signify complementary relations, negative edges denote
conflicting relations, and dashed lines indicate negligible relations between data.

isolate the factors contributing to model errors, resulting in improved identification of label errors and
outlier data, respectively. Based on the relational information, we construct a novel graph structure
on the dataset and identify whether the data itself or the label is problematic (Figure 2). To this end,
we develop scalable graph algorithms that accurately identify label errors and outlier data points.

In Section 3.6, we further introduce a visualization tool named data relation map that captures the rela-
tional structure of a data point. Through the map, we can understand the underlying relational structure
and interactively diagnose data. In Figure 1, we observe different patterns in the relation maps of
the second and third samples, despite their similar margin and loss scores. This highlights that the
relational structure provides complementary information not captured by the unary scoring methods.

Our approach only requires the model’s feature embedding and prediction score on data, making it
more scalable compared to methods that require calculating the network gradient on each data point
or retraining models multiple times to estimate data influence [37, 17]. Furthermore, our method is
domain- and model-agnostic, and thus is applicable to various tasks. We evaluate our approach on
label error and outlier/OOD detection tasks with large-scale image, speech, and language datasets:
ImageNet [41], ESC-50 [35], and SST2 [53]. Our experiments show state-of-the-art performance on
all tasks, demonstrating its effectiveness for debugging and cleaning datasets over various domains.

2 Related works

Label error detection Label errors in datasets can negatively impact model generalization and
destabilize evaluation systems [16, 32]. Prior works address this issue through label error detection
using bagging and bootstrapping [44, 39], or employing neural networks [18, 9, 19]. To mitigate
overfitting on label errors, Pleiss et al. [36] propose tracking the training process to measure the
area under the margin curve. Recent studies demonstrate that simple scoring methods with large
pre-trained models, such as prediction margins or loss values, achieve comparable results to previous
complex approaches [31, 5]. Meanwhile, Wu et al. [55] propose a unified approach for learning with
open-world noisy data. However, the method involves a complicated optimization process during
training, which is not suitable for large-scale settings. Another line of approach to identifying label
errors involves measuring the influence of a training data point on its own loss [22, 37]. However,
these approaches require calculating computationally expensive network gradients on each data point,
and their performance is known to be sensitive to outliers and training schemes [2, 3]. In this work,
we present a scalable approach that leverages the data relational structure of trained models without
additional training procedures, facilitating practical analysis of label issues.
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Outlier/OOD detection Detecting outlier data is crucial for building robust machine learning
systems in real-world environments [23]. A recent survey paper defines the problem of finding outliers
in training set as outlier detection and finding outliers in the inference process as OOD detection
[57]. The conventional approach for detecting outliers involves measuring k-nearest distance using
efficient sampling methods [46]. More recently, attempts have been made to detect outlier data using
scores obtained from trained neural networks, such as Maximum Softmax Probability [14], Energy
score [27], and Max Logit score [15]. Other approaches suggest adding perturbations on the inputs or
rectifying the activation values to identify the outlier data [26, 47]. Lee et al. [25] propose fitting a
Gaussian probabilistic model to estimate the data distribution. Recently, Sun et al. [48] propose a
non-parametric approach measuring the k-nearest feature distance. In our work, we explore the use
of the relational structure on the feature-embedded space for identifying outlier data. Our approach
is applicable to a wide range of domains without requiring additional training while outperforming
existing scoring methods on large-scale outlier/OOD detection benchmarks.

3 Methods

In this section, we describe our method for identifying label errors and outliers using a model
trained on the noisy training dataset. We exploit the feature-embedded structure of the learned neural
networks, which are known to effectively capture the underlying semantics of the data [38]. We
define data relation to construct a data relation graph on the feature space, and introduce our novel
graph algorithms for identifying label errors and outlier data. In Section 3.6, we introduce the data
relation map as an effective visualization tool for diagnosing and contextualizing data.

3.1 Data relation

We describe our approach in the context of a classification task, while also noting that the ideas are
generalizable to other types of tasks as well. We assume the presence of a trained neural network
on a noisy training dataset with label errors and outliers, T = {(xi, yi) | i = 1, . . . , n}. By utilizing
data features extracted from the network, we measure the semantic similarity between data points
with a bounded kernel k : X × X → [0,M ], where a higher kernel value indicates greater similarity
between data points. Our framework can accommodate various bounded kernels such as RBF kernel
or cosine similarity [58]. We provide detailed information on the kernel function used in our main
experiments in Section 3.4.
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Figure 3: Relation values of samples from Im-
ageNet with MAE-Large [13]. We denote the
assigned label above each sample. Here, the
center image has a label error.

By incorporating the assigned label information with
the similarity kernel k, we define the relation func-
tion r : X × Y × X × Y → [−M,M ]:

r ((xi, yi), (xj , yj)) = 1(yi = yj) · k(xi, xj), (1)

where 1(yi = yj) ∈ {−1, 1} is a signed indicator
value. The relation function reflects the degree to
which data samples are complementary or conflict-
ing with each other. In Figure 3, the center image
with a label error has negative relations to the left
samples that belong to the same ground-truth class.
In contrast, the two left samples with correct labels
have a positive relation. We also note that samples
with dissimilar semantics exhibit near-zero relations.

Our relation function r relies solely on the paral-
lelizable forward computation of neural networks,
ensuring scalability in large-scale settings.

3.2 Label error detection

We consider a fully-connected undirected graph G = (V, E ,W), where the set of nodes V corresponds
to T and the weightsW on edges E are the negative relation values defined in Equation (1). For
notation clarity, we denote a data point by an index, i.e., T = {1, . . . , n}. Then, for nodes i and j,
the edge weight is w(i, j) = −r(i, j) = −r((xi, yi), (xj , yj)). We set w(i, i) to 0, which does not
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Figure 4: Illustration of our scoring algorithms for identifying label noise (left) and outliers (right).

correspond to any edges in the graph. Consistent with previous works [31], we aim to measure the
label noisiness score for each data, where a higher score indicates a higher likelihood of label error.
We denote the label noisiness scores for T as s ∈ Rn, where s[i] is the score for data i.

As depicted in Figure 3, data with label errors exhibit negative relations with other samples, implying
that the data have similar features in the embedding space yet have dissimilarly assigned labels.
This suggests that the edge weights w(i, ·) quantify the extent to which the label assigned to node i
conflicts with the labels of other nodes. However, simply aggregating all edge weights of a node can
yield suboptimal results, as negative relations can also contribute to the score for clean data, as shown
in Figure 3. In Appendix C.1, we provide a more detailed experimental analysis of this issue.

To rectify this issue, we develop an algorithm that considers the global structure of the graph instead
of simply summing the edge weights of individual nodes. Specifically, we identify subsets of data
likely to have correct/incorrect labels and calculate the label noisiness score based on the subsets. We
partition the nodes in T into two groups, whereN ⊂ T denotes the estimated noisy subset and T \N
denotes the clean subset. To optimize N , we aim to maximize the sum of the edges between the two
groups, indicating that the label information of the two groups is the most conflicting. To ensure that
N contains data with incorrect labels, which constitute a relatively small proportion of T , we impose
regularization to the cardinality of N with λ ≥ 0 and formulate the following max-cut problem:

N ∗ = argmax
N⊂T

cut(N , T \N )
(
:=

∑
i∈N

∑
j∈T \N

w(i, j)
)
− λ|N |. (2)

The max-cut problem is NP-complete [11]. To solve this problem, we adopt the Kerninghan-Lin
algorithm, which finds a local optimum by iteratively updating the solution [20]. However, the
original algorithm that swaps data one by one at each optimization iteration is not suitable for
large-scale settings. To this end, we propose an efficient set-level algorithm in Algorithm 1 that
alternatively updates the noisy set N and label noisiness score vector s.

Specifically, given the current estimation of N , the cut value excluding edges of node i ∈ T is
cut(N\{i}, T \N\{i}). Algorithm 1 measures the label noisiness score of node i by comparing the
objective cut values when including i in N and when including i in T \N :

s[i] = cut(N∪{i}, T \N\{i})− cut(N\{i}, T \N∪{i}) =
∑

j∈T \N

w(i, j)−
∑
j∈N

w(i, j).

Algorithm 1 Label noise identification

Input: Relation function r (= −w)
Notation: The number of data n
for i = 1 to n do

s̄[i] =
∑n

j=1 w(i, j) # caching initial score
end for
s = s̄
repeat
N = {i | s[i] > λ, i ∈ [1, . . . , n]}
for i = 1 to n do

s[i]← s̄[i]− 2
∑

j∈N w(i, j)
end for

until convergence
Output: s,N

Here we use the assumption w(i, i) = 0. In prac-
tice, the cardinality of N is small, so we can ef-
ficiently update the score vector s by caching the
initial score vector s̄ as in Algorithm 1. After cal-
culating the score vector s, we update the noisy
set N by selecting nodes with score values above
the value λ. Figure 4 illustrates the optimization
process. Here larger values of λ result in smaller
N consisting of data samples that are more likely
to have label noise. We provide the sensitivity
analysis of λ in Appendix B.1, with Table 9.

Algorithm 1 satisfies the convergence property in
Proposition 1. In Appendix A, we provide proof
and present an empirical convergence analysis on
large-scale datasets. We also conduct a runtime
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analysis of our algorithm in Section 3.5, demonstrating that the computation overhead of Algorithm 1
is negligible in large-scale settings.

Proposition 1. Algorithm 1 with a single node update at each iteration converges to local optimum.

Complexity analysis The time complexity of Algorithm 1 is O(n2), proportional to the number
of edges in a graph. It is noteworthy that our method maintains the best performance when used
with graphs consisting of a small number of nodes, as shown in Figure 5. This implies that we can
partition large datasets and run the algorithm repeatedly for each partition to enhance efficiency
while maintaining performance. In this case, the complexity becomes O(n/k · k2) = O(nk), with k
representing the size of each partition and n/k being the number of partitions. Also, computations on
these partitions are embarrassingly parallelizable, meaning that the complexity becomes O(k2) for
k ≪ n in distributed computing environments.

3.3 Outlier/OOD detection

In the previous section, we presented a method for detecting label errors based on data relations
with similar feature embeddings but different label information. By employing the identical feature
embedding structure, we identify outlier data by measuring the extent to which similar data are absent
in the feature embedding space. To quantify the extent of a data point being an outlier, we aggregate
the similarity kernel values of a data point in Equation (3), thereby processing the entire relational
information of the data point. Our approach leverages global information about the data distribution,
resulting in a more robust performance across a range of experimental settings compared to existing
methods that rely on local information such as k-nearest distance [48]. Specifically, for a subset
S ⊆ T and data x, we measure the outlier score as

outlier(x) =
1∑

i∈S k(x, xi)
.

Higher values in the outlier score indicate that the data are more distributionally outliers. We propose
to use a uniform random sampling for S , adjusting the computational cost and memory requirements
for the outlier score calculation to suit the inference environment. In Section 4.2, we verify our method
maintains the best OOD detection performance even when using only 0.4% of the data in ImageNet.

3.4 Proposed similarity kernel

For xi ∈ X , we extract the feature representation fi and the prediction probability vector pi from the
trained model. We propose a class of bounded kernel k : X × X → [0,M ] with the following form:

k(xi, xj) = |s(fi, fj) · c(pi,pj)|t. (3)

A positive scalar value t controls the sharpness of the kernel value distribution. A larger value of t
makes a small kernel value smaller, which is effective in handling small noisy kernel values. A scalar
value s(fi, fj) ∈ R+ denotes a similarity measurement between features. In our main experiments,
we adopt the truncated cosine-similarity that has been widely used in representation learning [42, 40].
We use the hinge function at zero, resulting in the following positive feature-similarity function:

s(fi, fj) = max(0, cos(fi, fj)).

It is worth noting the utility of our framework is not limited to a specific kernel design. In Section 4.3,
we verify our approach maintains the best performance with s(fi, fj) defined as the RBF kernel [58].

While the feature similarity captures the meaningful semantic relationship between data points, we
observe that considering the prediction scores pi can further improve the identification of problematic
data. To incorporate prediction scores into our approach, we introduce a scalar term c(pi,pj)
that measures the compatibility between the predictions on data points. Any positive and bounded
compatibility function is suitable for the kernel class defined in Equation (3). In our main experiments,
we use the predicted probability of belonging to the same class as the compatibility term c(pi,pj).
Specifically, given the predicted label random variables ŷi and ŷj , the proposed compatibility term is

c(pi,pj) = P (ŷi = ŷj) = p⊺
i pj . (4)

From a different perspective, we interpret this term as a measure of confidence for feature similarity.
In Section 4.3, we verify the effectiveness of the compatibility term through an ablation study.
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Table 1: Time spent (s) for label error detection on ImageNet
1.2M dataset. Feature indicates the total computing time for
calculating feature embeddings of all data points, and Gradi-
ent means the total computing time for calculating network
gradient on each data point. Algorithm 1 indicates the time
spent by our algorithm, excluding feature calculation.

Model Feature Algorithm 1 Gradient

MAE-Base 2300 400 6000
MAE-Large 6900 420 21000

Table 2: Time spent per sample
(ms) for OOD detection on Ima-
geNet with various models. Unary
refers to unary scoring methods
utilizing logit or probability score
for each data point.

Model Unary Relation

MAE-Large 12.2 12.3
ResNet-50 8.1 8.2

Interpretation To better understand our relation function with kernel defined in Equation (3),
we draw a connection to the influence function [37], which estimates the influence between data
points by computing the inner product of the network gradient on the loss function ℓ of each data
point as ∇wℓ(xi)

⊺∇wℓ(xj), where w denotes the network weights. Following the convention, we
consider an influence function on the feed-forward layer, where ℓ(xi) = h(f ′i) = h(w⊺fi). By the
chain rule, we can decompose the network gradient as ∇wℓ(xi) = ∇f ′h(f

′
i)f

⊺
i , and represent the

influence as∇f ′h(f
′
i)

⊺∇f ′h(f
′
j) · f

⊺
i fj . Our relation function differs from the influence function in

that it does not rely on feature gradients ∇f ′h(f
′
i) to evaluate the relationship between data points.

Instead, our relation function compares model predictions and assigned labels independently using
the terms c(pi,pj) and 1(yi, yj). Our formulation does not require computationally expensive
back-propagation and more robustly identifies conflicting data information than influence functions
which are known to be sensitive to outliers [2]. We provide a more detailed theoretical analysis in
Appendix A.3.

3.5 Computation time analysis

In this section, we measure the time spent on detection algorithms. We use 1 RTX3090-Ti GPU
and conduct experiments on the full ImageNet training set. Table 1 compares computation time for
Algorithm 1 and feature calculation. Note that all existing methods using neural networks require
at least the computation of data features fi. Table 1 shows that Algorithm 1 (excluding feature
calculation) requires significantly less computation time than the feature calculation. We also observe
that our algorithm efficiently scales up to large neural networks, MAE-Large, which have a larger
number of feature embedding dimensions than the base model. It is also worth noting that computing
the network gradient takes a much longer time, demonstrating the efficiency of our algorithm in
large-scale label error detection compared to the existing methods.

In Table 2, we measure the time spent for OOD detection on the full ImageNet training set. The
computation of our similarity kernel is embarrassingly parallelizable on GPUs. As shown in the table,
the overhead time for computing our outlier scores is negligible compared to the time spent for the
neural networks’ forward computation on a single data point. We can further reduce the time and
memory requirements by measuring the outlier score on a subset of the training set (Figure 7).

3.6 Data relation map

In this section, we present a visualization method based on our data relation function to contextualize
data and comprehend its relational structure. One of the effective approaches for visualizing a dataset
is dataset cartography [49], which projects the dataset onto a 2D plot. This approach draws a scatter
plot of the mean and standard deviation of the model’s prediction probabilities for each data sample
during training. Inspired by the dataset cartography, we propose a data relation map, which visualizes
the relationship between data along the training process. To this end, we uniformly store checkpoints
during training. We denote a set of these checkpoints as K, where rk refers to the relation function
for checkpoint k ∈ K. For each data sample i ∈ T , we draw a scatter plot of the mean and standard
deviation of relation values {rk(i, j) | k ∈ K} for j ∈ T \{i}.
In Figure 1, we provide relation maps of three samples from ImageNet, using 10 checkpoints of
MAE-Large [13]. The three samples each represent clean data, data with a label error, and outlier
data. From the figure, samples show different relation map patterns. Specifically, the relation map of

6



Table 3: Validation top-1 accuracy of MAE-Large trained on ImageNet with noisy labels.

Label Noise Ratio 0. 0.04 0.08 0.12 0.15

Top-1 Accuracy 85.89 84.96 84.15 82.88 81.50

a clean data sample exhibits a majority of positive relations with relatively small variability. We note
that there are gray-colored relations in high variability regions (0.2<std), indicating that the model
resolves conflicting relations at convergence. On the other hand, the relation map of the sample with
a label error demonstrates a majority of negative relations. Notably, high variance relations result in
largely negative relations at convergence, suggesting that conflicts intensify. Lastly, the relation map
of the outlier data sample reveals that relations are close to 0 during training. These relation maps can
serve as a model-based fingerprint of the data, which our algorithm effectively exploits to identify
problematic data. We provide additional data relational maps for various models in Appendix D.1.

4 Experimental results

In this section, we experimentally verify the effectiveness of our approach in detecting label errors
and outliers. We provide implementation details, including hyperparameter settings in Appendix B.1.
We provide qualitative results, including detected label errors and outlier samples in Appendix D.2.

4.1 Label error detection

4.1.1 Setting

Datasets We conduct label error detection experiments on large-scale datasets: ImageNet [41],
ESC-50 [35], and SST2 [53]. ImageNet consists of about 1.2M image data from 1,000 classes.
ESC-50 consists of 2,000 5-second environmental audio recordings organized into 50 classes. SST2
is a binary text sentiment classification dataset, consisting of 67k movie review sentences. We also
conduct experiments on MNLI [53] and provide results in Appendix, Table 13.

Following Pruthi et al. [37], we construct a noisy training set by flipping labels of certain percentages
of correctly classified training data with the top-2 prediction of the trained model. We use different
neural network architectures for constructing a noisy training set and detecting label errors to avoid
possible correlation. We leave a more detailed procedure for constructing the noisy training set in
Appendix B.2. In Table 3, we provide the top-1 validation accuracy of MAE-Large trained on training
sets with noisy labels, demonstrating the importance of label noise detection and cleaning.

Baselines We compare our method (Relation) to six baselines that are suitable for large-scale
datasets. We consider fine-tuned loss from pre-trained models (Loss) [5], prediction probability mar-
gin score (Margin) [31], and the influence-based approach called TracIn [37]. We also evaluate model-
agnostic scoring methods: Entropy, Least-confidence, and Confidence-weighted Entropy (CWE) [24].
For a fair comparison, we evaluate methods using a single converged neural network in our main
experiments, while also providing results with a temporal ensemble suggested by [37] in Table 5.

Metric We evaluate the detection performance based on label reliability scores by each method.
We note that detecting label errors is an imbalanced detection problem, which makes the AUROC
metric prone to being optimistic and misleading [7]. In this respect, we mainly report the AP (average
precision) and TNR95 (TNR at 0.95 TPR), and provide AUROC results in Appendix C.2.

4.1.2 Results and analysis

ImageNet We measure the label error detection performance on ImageNet with the synthetic label
noise by training an MAE-Large model [13]. Note that the model does not have access to information
about the changed clean labels during the entire training process. Figure 5 (a) shows the detection
performance over a wide range of label noise ratios from 4% to 15%. As shown in the figure, our
approach achieves the best AP and TNR95 performance compared to the baselines. Especially, our
method maintains a high TNR95 over a wide range of noise ratios, indicating that the number of data
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Figure 5: Label error detection performance on ImageNet with MAE-Large according to (a) label
noise ratios and (b) the number of data. We obtain the results in (b) with 8% label noise. We report
performance values of all methods in Appendix C.2, with Tables 10 and 11.

Table 4: Label error detection performance on ImageNet with 8% label noise. Baseline refers to the
best performance among the six baselines considered in Figure 5. In Table (c), the evaluation metric
is AP. We report the performance of all baselines in Appendix C.2, with Tables 12 to 14.

(a) Model architecture scales
Scale Metric Baseline Relation

Base AP 0.477 0.514
TNR95 0.488 0.672

Large AP 0.484 0.526
TNR95 0.521 0.695

(b) Speech/language domains
Dataset Metric Baseline Relation

ESC50 AP 0.739 0.779
TNR95 0.793 0.847

SST2 AP 0.861 0.881
TNR95 0.850 0.870

(c) Realistic label noise scenario
Model Baseline Relation

MAE 0.708 0.733
BEIT 0.719 0.737
ConvNeXt 0.713 0.735
ConvNeXt-22k 0.724 0.744

that need to be reviewed by human annotators is significantly smaller when cleaning the dataset. In
Figure 10, we present detected label error samples by our algorithm.

It is worth noting that our method relies on the number of data for constructing a relation graph. To
measure the sensitivity of our algorithm to the number of data, we evaluate the detection performance
using a reduced number of data with uniform random sampling. Figure 5 (b) shows the detection
performance on 8% label noise with MAE-Large. From the figure, we find that our algorithm
maintains the best detection performance even with 1% of the data (12k). This demonstrates that
our algorithm is effective even when only a small portion of the training data is available, such as
continual learning or federated learning [33, 30]. In Table 4 (a), we provide detection performance for
different scales of MAE models on 8% label noise. The table shows our approach achieves the best
AP with MAE-Base, verifying the robustness of our approach to the network scales. From the table,
we note that larger models are more robust to label noise and show better detection performance.

Speech and language domains We apply our method to speech and language domain datasets:
ESC-50 [35] and SST2 [53]. We design the label noise detection settings identical to the previous
ImageNet section. Specifically, we train the AST model [10] for ESC-50 and the RoBERTa-Base
model [28] for SST2 under the 10% label noise setting. Table 4 (b) shows our approach achieves
the best AP and TNR95 on the speech and language datasets, demonstrating the generality of our
approach across various data types.

Realistic label noise The ImageNet validation set is known to contain numerous label errors [32].
To tackle this issue, Beyer et al. [4] cleaned the labels with human experts and corrected around
29% of the labels via multi-labeling. With this re-labeled validation set, we conduct experiments
under the realistic label noise, with the task of detecting the data samples with changed labels. We
measure the detection performance with MAE-Large [13], BEIT-Large [1], and ConvNeXt-Large
[29] models. To examine the impact of pre-training on external data, we also include ConvNeXt
pre-trained on ImageNet-22k, denoted as ConvNeXt-22k. We construct the relation graph using only
the validation set, considering scenarios where the training data are not available. Table 4 (c) verifies
that our approach outperforms the best baseline across various models. The results on ConvNeXt-22k
indicate that pre-training on external data improves the detection performance.
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Table 5: Label error detection AP with the temporal model ensemble on ImageNet with 8% label
noise (MAE-Large). In parenthesis, we denote the performance gain compared to the detection by a
single converged model.

Entropy Least-conf. CWE Loss TracIn Margin Relation

0.246 (0.007) 0.282 (0.001) 0.397 (0.031) 0.465 (0.041) 0.449 (0.034) 0.544 (0.06) 0.562 (0.036)
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Figure 6: Label error detection performance of
relation graph throughout the MAE-Large training
process on ImageNet with 8% label noise.

Memorization issue We investigate the im-
pact of large neural networks’ ability to memo-
rize label errors on detection performance [59].
In the left figure of Figure 6, we find that the AP
score decreases as the training progresses after
30 epochs with MAE-Large which converges at
50 epochs. From the precision-recall curves in
Figure 6, we observe that precision increases at
low recall area but decreases at mid-level recall
(∼ 0.5) as the training progresses. This suggests
that training has both positive and negative ef-
fects on detecting label noise, and we speculate
that memorization is one cause.

Leveraging these observations, we measure the label error detection performance by using the
temporal model ensemble [37]. Specifically, we average the label reliability scores from 4 checkpoints
that are uniformly sampled throughout training. Table 5 shows that this technique improves the
performance of all methods, with our approach still exhibiting the best performance. These results
confirm the effectiveness of temporal ensembles when more computation and storage are available.

4.2 Outlier/OOD detection

Baselines We consider the following representative outlier scoring approaches: Maximum Softmax
Probability (MSP) [14], Max Logit [15], Mahalanobis [25], Energy score [27], ReAct [47], KL-
Matching [15], and KNN [48]. We tune the KNN method’s hyperparameter k based on the paper’s
guidance as k = 1000× α, where α represents the ratio of training data used for OOD detection. We
also evaluate outlier detection approaches, Iterative sampling [46] and Local outlier factor [54].

OOD detection Following Sun et al. [48], we evaluate OOD detection performance on the ImageNet
validation set consisting of 50k in-distribution data samples, along with four distinct OOD datasets:
Places [60], SUN [56], iNaturalist [51], and Textures [6]. Each of these OOD datasets consists of 10k
data samples except for Textures which has 5,640 data samples. We also combine these four datasets,
denoted as ALL, and measure the overall OOD detection performance on this dataset.

Figure 7 shows OOD detection performance of MAE-Large on ALL outlier dataset. Our approach
and KNN both rely on the number of training data samples (|S|) for outlier score calculation. We
examine the effect of training set size by measuring the performance with a reduced number of
data using uniform random sampling. Figure 7 verifies that our approach outperforms baselines
while maintaining performance even with 0.4% of the training dataset (5k). Note that KNN requires
hyperparameter tuning according to the training set size, whereas our approach uses the identical
hyperparameter (t = 1) regardless of the size. Figure 8 shows performance on four individual OOD
datasets. In Appendix C.3, Table 16, we provide OOD detection results with ResNet-50 [12], where
our approach consistently achieves the best performance over the nine baselines considered.

Outlier detection We perform outlier detection experiments following the methodology by Wang
et al. [54], where the training set contains outlier data with random labels. We construct the noisy
ImageNet-100 training sets by using iNaturalist [51] and SUN [56] datasets. We train a ViT-Base
model [8] from scratch on these noisy training datasets, and measure outlier detection performance
using the trained model. For a more detailed description, please refer to Appendix B.3.

Table 6 shows the outlier detection results on two outlier datasets. As indicated, our method achieves
the best performance in both outlier settings, demonstrating its effectiveness in outlier detection. It is
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Figure 7: OOD detection performance on Im-
ageNet (ALL) with MAE-Large. Unary-best
means the best performance among the methods
that do not rely on the training data for outlier
score calculation. We provide performance val-
ues of all baselines in Appendix C.3, Table 15.
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Figure 8: OOD detection performance on in-
dividual ImageNet OOD datasets with MAE-
Large. Baseline-best refers to the best perfor-
mance among the nine baselines. We provide per-
formance values of all baselines in Appendix C.3,
with Table 15.

Table 6: Outlier detection performance with Vit-Base on noisy ImageNet-100. Some OOD scoring
methods (Mahalanobis, ReAct, KL-Matching) are excluded from the comparison because they require
a clean training dataset which is not available in the outlier detection setup.

(a) ImageNet-100 with SUN

Method AUROC AP TNR95

MSP 0.708 0.335 0.032
Max Logit 0.499 0.216 0.011
Energy 0.417 0.106 0.010
KNN 0.990 0.899 0.960
Iterative sampling 0.973 0.687 0.903
Local outlier factor 0.986 0.850 0.941

Relation (Ours) 0.993 0.906 0.971

(b) ImageNet-100 with iNaturalist

Method AUROC AP TNR95

MSP 0.706 0.309 0.040
Max Logit 0.469 0.171 0.012
Energy 0.375 0.075 0.012
KNN 0.993 0.923 0.972
Iterative sampling 0.979 0.734 0.922
Local outlier factor 0.990 0.890 0.958

Relation (Ours) 0.995 0.940 0.982

worth noting that the considered OOD scoring methods (MSP, Max Logit, Energy) do not achieve
good outlier detection performance. We speculate that this is due to the overfitting of the neural
network’s predictions on outliers.

Detecting outliers in validation set We further utilize our method for identifying outliers in the
validation set by retrieving data samples with the highest outlier score (Section 3.3). In Figure 11, we
present samples detected by our algorithm from ImageNet and SST2. In the figure, we observe that
these samples are not suitable for measuring the predictive performance on labels, which should be
excluded from the evaluation dataset.

4.3 Ablation study
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Figure 9: The detection AP of MAE-Large across
a range of kernel temperatures t. The dashed blue
line means the best baseline performance.

Temperature t In Equation (3), we introduced
a temperature t, where a large value of t in-
creases the influence of large relation values in
our algorithm. We conduct sensitivity analysis
on t with MAE-Large on ImageNet under 8%
label noise. Figure 9 shows the effect of the
temperature value on our detection algorithm’s
performance. From the figure, we observe that
the label error detection performance increases
as the t value increases, saturating at t = 6. In
the case of OOD detection, we achieve the best
performance at around t = 1. Our algorithm outperforms the best baseline over a wide range of
hyperparameters, demonstrating the robustness of our algorithm to the hyperparameter.
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Figure 10: Detected data samples with label errors (marked in red) from ImageNet (top) and SST2
(bottom). We present samples with conflicting relations next to the detected samples and denote the
corresponding relation value in parenthesis. We present more samples in Appendix D.2, Figure 15.
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Figure 11: Data samples with the highest outlier scores by our method on ImageNet (top) and SST2
(bottom) validation sets. We denote the assigned labels above each data sample. We present more
outlier samples in Appendix D.2, Figure 16 and Table 18.

Table 7: Comparison of similarity kernel designs.
Baseline represents the best baseline performance.
The term c denotes our compatibility term in Equa-
tion (4). Note, Cos · c is the kernel function consid-
ered in our main experiments, and RBF / Cos refers
to our method without the compatibility term c.

Metric Baseline RBF Cos RBF · c Cos · c
AP 0.484 0.470 0.471 0.525 0.526
TNR95 0.521 0.668 0.671 0.703 0.695

Similarity kernel design We present an em-
pirical analysis of the kernel design choices.
Specifically, we replace the cosine similarity
term in Equation (3) as the RBF kernel and eval-
uate the detection performance. We further con-
duct an ablation study on compatibility terms
(Equation (4)). Table 7 summarizes the label
error detection performance with different ker-
nel functions on ImageNet with 8% noise ratio.
The table shows that our approach largely out-
performs the best baseline even with the RBF
kernel. Also, we find that our approach without the compatibility term shows comparable AP perfor-
mance while significantly outperforming baselines in TNR95. These results demonstrate the generality
and utility of our relational structure-based framework, which is not limited to a specific kernel design.

5 Additional discussions

Why does relation graph work? We discuss the conceptual differences between our relation graph-
based approach and previous baselines. Firstly, our method is data-centric, whereas the previous
approaches rely on a unary score by models. Our approach identifies problematic data by comparing
them to other data, which leads to more reliable identification of problematic data than unary scoring
methods that are vulnerable to overfitting [36]. Secondly, our approach aggregates global relational
information, whereas previous methods rely on local information such as k-nearest distance [48].
Considering all edge connections, our method obtains more representative information about the data
distribution. Through temperature parameter t and efficient graph algorithms, we effectively process
the entire relations and achieve the improved identification of problematic data.

Limitations and future works There are several promising future directions for our work. Firstly,
the current experiments are limited to the classification task, and it would be valuable to apply our
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approach to a wider range of tasks, such as segmentation or generative models. These tasks may
introduce new and interesting categories of problematic data arising from different label spaces
and data structures. Secondly, integrating our method with human annotation and model training
processes will also be valuable. This could involve using our approach to identify inconsistencies in
label assignments or to conduct a fine-grained evaluation of models.

6 Conclusion

In this paper, we propose a novel data relation function and graph algorithms for detecting label
errors and outlier data using the relational structure of data in the feature embedding space. Our
approach achieves state-of-the-art performance in both label error and outlier/OOD detection tasks, as
demonstrated through extensive experiments on large-scale benchmarks. Furthermore, we introduce
a data contextualization tool based on our data relation that can aid in data diagnosis. Our algorithms
and tools can facilitate the analysis of large-scale datasets, which is crucial for the development of
robust machine-learning systems.
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A Algorithm analysis

A.1 Proof

In this section, we provide proof for Proposition 1. Recall that Algorithm 1 updates an estimated noisy
set N at a set-level as N = {i | s[i] > λ}. We can conduct Algorithm 1 with a single node update
at each iteration using the criterion s[i] > λ, referred to as a sample-level version of Algorithm 1.
Specifically, let us define v ∈ Rn such that v[i] = −1 for i ∈ N and v[i] = 1 for else. Then the
algorithm moves a sample k to another partition at each iteration, where k = argmaxi∈T v[i](s[i]−λ).
The algorithm stops when v[k](s[k]− λ) ≤ 0.
Proposition 1. Algorithm 1 with a single node update at each iteration converges to local optimum.

Proof. The change in the objective value of Equation (2) by moving data i from T \N to N is∑
j∈T \N

w(i, j)−
∑
j∈N

w(i, j)− λ, (5)

where the change by moving data i from N to T \N is∑
j∈N

w(i, j)−
∑

j∈T \N

w(i, j) + λ.

Note the score s in Algorithm 1 is

s[i] =
∑
j∈T

w(i, j)− 2
∑
j∈N

w(i, j) =
∑

j∈T \N

w(i, j)−
∑
j∈N

w(i, j).

Thus the change in the objective value by moving data i to another partition is s[i]− λ for i ∈ T \N
and−s[i]+λ for i ∈ N , which can be represented as v[i](s[i]−λ). Therefore, moving a sample with
a positive value of v[i](s[i]− λ) to another partition guarantees an increase in the objective function
value. Because a cut value in a graph is bounded, the algorithm converges to the local optimum by
the monotone convergence theorem.

A.2 Empirical convergence analysis

We conduct an empirical study on the convergence of Algorithm 1. Specifically, we randomly sample
100,000 data from ImageNet and construct a relation graph. We compare the set-level Algorithm 1 and
the original Kerninghan-Lin algorithm in Figure 12. The figure indicates that both algorithms converge
to local optimum, while our set-level algorithm converges faster. Additionally, we observe that the
set-level algorithm achieves a lower objective value, verifying its effectiveness in large-scale settings.
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Figure 12: Empirical convergence analysis of max-cut algorithms. Set denotes Algorithm 1 and
Single denotes the Kerninghan-Lin algorithm which updates a single node at each optimization step.

A.3 Interpretation of relation function

We establish an understanding of our relation function in Equation (1) by drawing a connection
to the influence function [37]. For simplicity, we consider the influence function with a single
checkpoint, where the influence between data xi and xj is given by ∇wℓ(xi)

⊺∇wℓ(xj). Here, ℓ
denotes the loss function, and w denotes the weight of the checkpoint. We consider the influence
function at the feed-forward layer, where ℓ(xi) = h(f ′i) = h(w⊺fi), following the convention
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Table 8: Hyperparameter settings. We use identical
hyperparameters for all experiments of each task
regardless of model types.

Task t (Equation (3)) λ (Algorithm 1)

Label error 4 0.05
Outlier 6 -
OOD 1 -

Table 9: Label error detection performance
over a range of λ values (ImageNet 8% noise,
MAE-Large).

Metric \ λ 0.0 0.01 0.05 0.1

AP 0.522 0.524 0.527 0.527
TNR95 0.692 0.693 0.695 0.693

[37]. By the chain rule, we can decompose the weight gradient as ∇wℓ(xi) = ∇f ′h(f
′
i)f

⊺
i , and

represent the influence as ∇f ′h(f
′
i)

⊺∇f ′h(f
′
j) · f

⊺
i fj . In contrast, our relation function has a form of

1(yi = yj) · |s(fi, fj) · c(pi,pj)|t.
The main distinction between our relation function and the influence function is the existence of
the feature gradient term ∇f ′h(f

′
i). As observed in Barshan et al. [2], outliers have a large feature-

gradient norm, leading to difficulties in detecting label errors. Specifically, let us consider the weight
w at the classifier layer, where the function h is the softmax cross-entropy loss function. As Pruthi
et al. [37], we can express the feature gradient inner-product as

∇f ′h(f
′
i)

⊺∇f ′h(f
′
j) = (yi − pi)

⊺(yj − pj),

where yi denote the one-hot label. The equation above shows that the correctly classified data with
yi ≈ pi yields near zero inner-product values, whereas outliers with high entropy predictions exhibit
large inner-product values. Consequently, existing influence-based label error detection methods,
which detect label errors by identifying data with high influence values, have degraded performance
in the presence of outliers [2].

Our relation function differs from influence functions in that it separates label and prediction infor-
mation using a label comparison term 1(yi = yj) and a compatibility term c(pi,pj), respectively.
Outlier data typically have a high entropy of model predictions, resulting in lower compatibility
values with other data [14]. On the other hand, normal data with label errors exhibit high compatibil-
ity values with other normal data. Our detection algorithms exploit these differences and achieve
improved detection performance compared to the influence functions.

B Experiment settings

B.1 Implementation details

Models For label error detection, we train models on datasets with label noise. In the case of
ImageNet, we fine-tune the pre-trained MAE models following the official training codes2, which
train MAE-Large for 50 epochs and MAE-Base for 100 epochs. The MAE-Large model has a feature
dimension of 1024, where the MAE-Base model has a dimension of 768. It is worth noting that the
masked auto-encoding pre-training process of MAE does not utilize label information. We use 8
RTX3090-Ti GPUs for the training and 1 RTX3090-Ti GPU for executing our algorithm. In the case
of ESC-50, we fine-tune the AST model with a 768 feature dimension for 25 epochs following the
official training codes3. In the case of language domain tasks, we fine-tune RoBERTa-Base with a
768 feature dimension following the official training codes4, where we train models for 5 epochs.
For other models, we use the trained models provided by the Timm library5. For all experiments,
we use the inputs of the classification layers as feature embeddings. In the case of RoBERTa, this
corresponds to the encoder output of the [CLS] token.

Hyperparameter As shown in Figure 9, we observe that a large value of temperature t benefits
label error detection, while a moderate temperature value around 1 shows the best performance on
OOD detection. We summarized the hyperparameter used in our experiments in Table 8. Note we use
λ = 0.05 in Algorithm 1 after scaling the label reliability score to have a maximum absolute value of

2https://github.com/facebookresearch/mae
3https://github.com/YuanGongND/ast
4https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
5https://github.com/rwightman/pytorch-image-models
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1. We observe that the conservative estimation of noisy set N by using small positive λ values leads
to better results than λ = 0, as shown in Table 9. The results in the table confirm that our method
performs effectively over a wide range of λ values, outperforming the best scores of 0.484 AP and
0.521 TNR95 from the six baselines tested.

Other tricks We find that small noisy kernel values accumulate errors as we consider large numbers
of data. To resolve this issue, we clamp small similarity kernel values that fall below an absolute
value of 0.03 as zero in Equation (3).

B.2 Synthetic label noise generation

In Section 4.1, we conduct controlled experiments by generating synthetic label noise. Specifically,
we flip labels of a certain percentage of training data with the top-2 prediction of trained models on
correctly classified data. For the label flip, we use MAE-Huge for ImageNet and RoBERTa-Large for
language datasets. Note that we did not use these models for detecting label errors to prevent possible
correlations. In the case of speech domain, we use the identical AST architecture. We note that the
original ImageNet training set may contain label issues which can lead to misleading experimental
results [32]. Therefore, we remove about 4% of data that are likely to have label issues by following
Northcutt et al. [31] with MAE-Huge, resulting in a total of 1,242,890 data samples. We conduct
label error detection experiments on this pre-cleaned training set.

B.3 Outlier detection setting

As outlier detection is not well-benchmarked in modern computer vision [57], we design an exper-
imental setup with the ImageNet dataset and two outlier datasets: SUN [56] and iNaturalist [51],
each with 10k outlier data. To ensure an appropriate outlier data ratio (∼8%), we use ImageNet-100
[21], a subset of ImageNet consisting of 120k data from 100 classes. We adopt the outlier detection
setting of Wang et al. [54], where the training set has the outlier data with random labels. To consider
multiple types of outlier data, we construct two noisy training sets: ImageNet-100 with SUN and
ImageNet-100 with iNaturalist. We train a ViT-Base model [8] from scratch for 300 epochs on these
noisy training datasets and measure outlier detection performance using the trained model.

C Additional experimental results

C.1 Analysis on edge aggregation

In this section, we analyze the difference between label reliability scores calculated using max-cut
and simple edge sum. Specifically, in Figure 13, we draw histograms of label reliability scores for
two groups of data: one with clean labels and the other with label errors. The figure shows that the
score calculated through max-cut shifts the density in a positive direction for data with clean labels
and in a negative direction for data with label errors, compared to the simple edge sum. This indicates
that the label reliability score calculated with max-cut better separates label errors from the clean
data. In this case, TNR95 increases from 0.628 to 0.647 by applying the max-cut.
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Figure 13: Normalized histogram of label reliability scores by simple edge aggregation (Sum) and
max-cut. Arrows indicate changes in the density functions.
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C.2 Label error detection

In this section, we provide the exact performance values for Figure 5, including AUROC results.
We report label error detection performances under various noise levels in Table 10, and provide
performances according to the number of data in Table 11. The tables confirm that our relation graph
approach achieves the best label error detection performances in all three metrics, regardless of the
noise ratio and the number of data. In Tables 12 to 14, we provide performance values of all baselines
considered in Table 4.

C.3 OOD detection

In Tables 15 and 16, we provide OOD detection results on individual datasets mentioned in Section 4.2:
Places, SUN, iNaturalist, and Textures. We report the OOD detection performance of MAE-Large in
Table 15 and the performance of ResNet-50 in Table 16. The tables demonstrate that our approach
achieves the best OOD detection performance on three out of four datasets considered, while achieving
the best overall performance. Furthermore, our method shows the best performance on all three
metrics with both models, which highlights its effectiveness in detecting OOD data.

D Additional qualitative results

D.1 Relation map

In Figure 14, we present additional relation maps on ImageNet. We draw the relation maps with
MAE-Large and ResNet-50. Note, MAE-Large utilizes masked auto-encoding pre-training whereas
ResNet-50 is trained from scratch. From the figure, we observe that the models exhibit similar
distributions of positive and negative relations for each data point. However, the ResNet model tends
to have an overall larger variance of relation, indicating that the pre-training process reduces the
relation variance and is helpful in forming relationships between data.

The visualization tool helps us to comprehend the distribution of complementary and conflicting
relations associated with a data point, aiding dataset analysis and debugging. For example, in
Figure 14, the relation map of the Ram sample exhibits a combination of positive and negative
relations. Specifically, it exhibits positive relations with other Ram class samples while showing
negative relations with samples from the Big Horn class, which are visually challenging to distinguish.
This observation suggests the need for multi-labeling or refinement of the label space definition. In
this way, we can intuitively identify problems in the dataset by using the visualization tool.

D.2 Qualitative results

We present problematic data samples detected by our algorithm. Specifically, Figure 15 shows
ImageNet samples with label errors and their most conflicting data samples having negative relation
values. Figure 16 shows the outlier data detected by our algorithm on the ImageNet validation set,
indicating the existence of inappropriate data for evaluation. We also present results on SST2 [53], a
binary text sentiment classification dataset, in Tables 17 and 18.
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Table 10: Label error detection performance on a range of label error ratios (MAE-Large, ImageNet).

AUROC AP TNR95
Method \ Ratio 4% 8% 12% 15% 4% 8% 12% 15% 4% 8% 12% 15%

Entropy 0.790 0.796 0.801 0.803 0.153 0.246 0.334 0.389 0.115 0.137 0.162 0.181
Least-conf. 0.829 0.836 0.843 0.847 0.176 0.282 0.380 0.443 0.223 0.270 0.327 0.368
CWE 0.845 0.845 0.845 0.844 0.301 0.397 0.471 0.506 0.135 0.160 0.188 0.212
Loss 0.864 0.864 0.865 0.865 0.328 0.424 0.497 0.530 0.229 0.276 0.334 0.374
TracIn 0.889 0.888 0.887 0.885 0.303 0.415 0.498 0.536 0.503 0.521 0.556 0.582
Margin 0.876 0.875 0.876 0.876 0.403 0.484 0.544 0.568 0.346 0.392 0.457 0.505

Relation (Ours) 0.917 0.914 0.910 0.904 0.437 0.526 0.590 0.611 0.695 0.695 0.687 0.683

Table 11: Label error detection performance according to the number of data (MAE-Large, ImageNet, 8% label noise).

AUROC AP TNR95
Method \ #data 12k 25k 100k 400k 1.2M 12k 25k 100k 400k 1.2M 12k 25k 100k 400k 1.2M

Entropy 0.806 0.801 0.797 0.796 0.796 0.250 0.248 0.248 0.246 0.246 0.161 0.161 0.144 0.137 0.137
Least-conf. 0.844 0.841 0.836 0.837 0.836 0.289 0.287 0.284 0.283 0.282 0.255 0.269 0.275 0.277 0.27
CWE 0.852 0.850 0.845 0.845 0.845 0.390 0.394 0.392 0.394 0.397 0.169 0.184 0.177 0.163 0.16
Loss 0.869 0.868 0.863 0.864 0.864 0.415 0.421 0.418 0.421 0.424 0.260 0.298 0.282 0.284 0.276
TracIn 0.891 0.890 0.886 0.887 0.888 0.408 0.415 0.409 0.412 0.415 0.554 0.541 0.523 0.524 0.521
Margin 0.878 0.878 0.874 0.875 0.875 0.481 0.486 0.477 0.481 0.484 0.376 0.424 0.412 0.398 0.392

Relation (Ours) 0.910 0.912 0.912 0.914 0.914 0.502 0.515 0.518 0.523 0.526 0.679 0.692 0.692 0.696 0.695
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Table 12: Label error detection performance on various scales of MAE (ImageNet, 8% noise).

Scale Metric Entropy Least-conf. CWE Loss TracIn Margin Relation

Base AP 0.231 0.280 0.373 0.412 0.393 0.477 0.514
TNR95 0.120 0.217 0.132 0.223 0.488 0.342 0.672

Large AP 0.246 0.282 0.397 0.424 0.415 0.484 0.526
TNR95 0.137 0.270 0.160 0.276 0.521 0.392 0.695

Table 13: Label error detection performance on speech (ESC-50) and language (SST2, MNLI)
datasets with 10% label noise. For ESC-50, we use the AST model [10], and for SST2 and MNLI,
we use the RoBERTa-Base model [28].

Dataset Metric Entropy Least-conf. CWE Loss TracIn Margin Relation

ESC-50 AP 0.715 0.737 0.720 0.737 0.739 0.737 0.779
TNR95 0.784 0.783 0.790 0.783 0.789 0.793 0.847

SST2 AP 0.227 0.227 0.861 0.861 0.854 0.861 0.881
TNR95 0.175 0.175 0.850 0.850 0.837 0.850 0.870

MNLI AP 0.199 0.197 0.753 0.764 0.724 0.754 0.758
TNR95 0.103 0.104 0.494 0.497 0.510 0.514 0.660

Table 14: Label error detection AP on ImageNet validation set. All the model scales are Large.

Model Entropy Least-conf. CWE Loss TracIn Margin Relation

MAE 0.558 0.609 0.688 0.703 0.695 0.708 0.733
BEIT 0.614 0.644 0.707 0.719 0.718 0.718 0.737
ConvNeXt 0.587 0.625 0.696 0.710 0.700 0.713 0.735
ConvNeXt-22k 0.617 0.642 0.707 0.722 0.719 0.724 0.744
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Table 15: OOD detection performance on ImageNet with MAE-Large.

AUROC AP TNR95
Method \ OOD dataset ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures

MSP 0.857 0.835 0.833 0.907 0.853 0.818 0.543 0.567 0.699 0.514 0.428 0.386 0.315 0.651 0.376
Max Logit 0.824 0.787 0.790 0.881 0.850 0.808 0.531 0.557 0.700 0.570 0.138 0.106 0.088 0.320 0.216
Mahalanobis 0.875 0.819 0.841 0.948 0.904 0.815 0.471 0.489 0.722 0.532 0.521 0.407 0.474 0.847 0.599
Energy 0.776 0.728 0.738 0.829 0.837 0.757 0.446 0.467 0.592 0.553 0.074 0.060 0.050 0.127 0.154
ReAct 0.896 0.862 0.872 0.944 0.909 0.857 0.586 0.611 0.746 0.634 0.550 0.449 0.463 0.793 0.547
KL-Matching 0.877 0.848 0.857 0.928 0.874 0.818 0.500 0.526 0.708 0.455 0.548 0.473 0.490 0.738 0.511
Iterative sampling 0.444 0.377 0.409 0.457 0.600 0.382 0.127 0.134 0.145 0.173 0.073 0.051 0.061 0.125 0.131
Local outlier factor 0.556 0.492 0.521 0.594 0.665 0.431 0.151 0.160 0.183 0.173 0.156 0.113 0.136 0.283 0.240
KNN 0.901 0.861 0.884 0.946 0.922 0.854 0.550 0.593 0.736 0.648 0.590 0.487 0.560 0.808 0.626

Relation (Ours) 0.911 0.883 0.894 0.951 0.921 0.874 0.618 0.653 0.782 0.642 0.636 0.547 0.587 0.810 0.641

Table 16: OOD detection performance on ImageNet with ResNet-50.

AUROC AP TNR95
Method \ OOD dataset ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures

MSP 0.847 0.829 0.836 0.896 0.814 0.782 0.469 0.501 0.641 0.369 0.496 0.471 0.461 0.634 0.352
Max Logit 0.844 0.827 0.833 0.894 0.807 0.767 0.445 0.468 0.605 0.331 0.482 0.463 0.448 0.622 0.340
Mahalanobis 0.693 0.644 0.628 0.735 0.823 0.567 0.228 0.209 0.270 0.375 0.265 0.194 0.229 0.436 0.371
Energy 0.836 0.821 0.825 0.883 0.798 0.721 0.398 0.407 0.503 0.269 0.481 0.463 0.448 0.622 0.340
ReAct 0.624 0.610 0.623 0.626 0.650 0.446 0.185 0.189 0.188 0.128 0.361 0.302 0.370 0.429 0.371
KL-Matching 0.838 0.811 0.822 0.894 0.817 0.784 0.439 0.463 0.693 0.404 0.307 0.268 0.224 0.477 0.291
Iterative sampling 0.624 0.530 0.578 0.659 0.809 0.516 0.167 0.190 0.229 0.380 0.150 0.112 0.134 0.223 0.269
Local outlier factor 0.648 0.556 0.602 0.686 0.824 0.533 0.175 0.199 0.244 0.397 0.186 0.143 0.167 0.272 0.315
KNN 0.822 0.743 0.783 0.884 0.922 0.764 0.335 0.384 0.546 0.774 0.380 0.295 0.372 0.587 0.496

Relation (Ours) 0.870 0.830 0.853 0.922 0.879 0.818 0.493 0.543 0.708 0.513 0.515 0.429 0.498 0.691 0.465
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Parachute MAE ResNet

Clumber MAE ResNet Moped MAE ResNet

Norwich terrier MAE ResNet Ram MAE ResNet

Lemon MAE ResNet Barbell MAE ResNet

Bucket MAE ResNet Plate MAE ResNet

Water ouzel MAE ResNet Chihuahua MAE ResNet

Wool MAE ResNet Binder MAE ResNet

Figure 14: Data relation maps on ImageNet with MAE-Large and ResNet-50. We denote the assigned label above each
image. The color represents the relation value at the last checkpoint. The x-axis is the standard deviation and the y-axis is
the mean value of the relation values throughout training.
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Kite Bald eagle (-0.761) Bald eagle (-0.760) Bald eagle (-0.760) Bald eagle (-0.759)

Weasel Lesser panda (-0.761) Lesser panda (-0.761) Lesser panda (-0.758) Lesser panda (-0.757)

Ringlet Monarch (-0.763) Monarch (-0.754) Monarch (-0.753) Monarch (-0.753)

Impala Hartebeest (-0.794) Hartebeest (-0.768) Hartebeest (-0.763) Hartebeest (-0.761)

Passenger car Steam locomotive (-0.751) Steam locomotive (-0.751) Steam locomotive (-0.749) Steam locomotive (-0.747)

Redshank Ruddy turnstone (-0.761) Ruddy turnstone (-0.761) Ruddy turnstone (-0.758) Ruddy turnstone (-0.757)

Figure 15: The first column shows the data samples detected by our label error detection algorithm using
MAE-Large on ImageNet. We present the samples with the most conflicting relation next to the detected
samples. We denote the assigned label and the corresponding relation value above the image.
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Coffee mug Maze Stopwatch Barrow

Cockroach Airship Stone wall Vault

Apiary Torch Wig African grey

Whistle Stretcher Teddy Breastplate

Hammer Honeycomb Pretzel Alligator lizard

Vase Gasmask Barber chair Flute

Figure 16: Data samples with the highest outlier score by our method on the
ImageNet validation set. We denote the assigned label above the image.
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Table 17: Text samples with label errors detected by our algorithm on the SST2
dataset. Below the text with label error, we present two text samples with
conflicting relations and denote the corresponding relation value in parenthesis.

Text Label

a damn fine and a truly distinctive and a deeply pertinent film Negative
- a breathtakingly assured and stylish work Positive (-0.980)
- a winning and wildly fascinating work Positive (-0.978)

fails to have a heart, mind or humor of its own Positive
- failing to find a spark of its own Negative (-0.970)
- this movie’s lack of ideas Negative (-0.958)

a ploddingly melodramatic structure Positive
- plodding action sequences Negative (-0.959)
- plodding picture Negative (-0.957)

is somewhat problematic Positive
- the more problematic aspects Negative (-0.945)
- the problematic script Negative (-0.930)

a bittersweet contemporary comedy Negative
- bittersweet film Positive (-0.940)
- of bittersweet camaraderie and history Positive (-0.921)

Table 18: Outlier text samples detected by our algorithm on the SST2 dataset.

Text Label

the battle Negative
give a backbone to the company Positive
leather pants Positive
the israeli/palestinian conflict as Negative
the story relevant in the first place Positive
from a television monitor Positive
loud, bang-the-drum Positive
a movie instead of an endless trailer Negative
a doctor’s office, emergency room, hospital bed or insurance company office Positive
this is more appetizing than a side dish of asparagus Negative
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