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spherepc: An R Package for Dimension
Reduction on a Sphere
by Jongmin Lee, Jang-Hyun Kim and Hee-Seok Oh

Abstract Dimension reduction is a technique that can compress given data and reduce noise. Recently,
a dimension reduction technique on spheres, called spherical principal curves (SPC), has been pro-
posed. SPC fits a curve that passes through the middle of data with a stationary property on spheres.
In addition, a study of local principal geodesics (LPG) is considered to identify the complex structure
of data. Through the description and implementation of various examples, this paper introduces an R
package spherepc for dimension reduction of data lying on a sphere, including existing methods, SPC
and LPG.

1 Introduction

This paper aims to introduce an R package spherepc that considers several dimension reduction
techniques on a sphere, which encompass recently developed approaches such as SPC and LPG as
well as some existing methods, and discuss how to implement these methods through spherepc.

Dimension reduction methods are widely used in various fields, including statistics and machine
learning, by efficiently compressing data and removing noise (Benner et al., 2005). As one of the
dimension reduction methods, the principal curves of Hastie and Stuetzle (1989) are suitable for fitting
a curve or a surface of data in Euclidean space, which go through the middle of the data. Hauberg
(2016) proposed an algorithm to find the principal curves in Riemannian manifolds based on the
concept of the original principal curves. However, the principal curves proposed by Hauberg (2016)
no longer represent the data continuously because of the approximation of the projection step required
to fit the curves.

Recently, Lee et al. (2021a) proposed a new method, termed spherical principal curves (SPC), that
constructs principal curves, ensuring a stationary property on spheres. SPC is useful for representing
circular or waveform data with smaller reconstruction errors than conventional methods, including
principal geodesic analysis (Fletcher et al., 2004), exact principal circle (Lee et al., 2021a), and principal
curves proposed by Hauberg (2016). However, SPC has the disadvantage of being sensitive to
initialization. As a result, there are some data structures that SPC does not apply to, for example, data
with spirals, zigzags, or branches like tree-shape. A localized version of SPC called local principal
geodesics (LPG) is being developed to resolve such a problem. A function for LPG is also provided in
the package spherepc. Research on the LPG is underway in progress.

To the best of our knowledge, no available R packages offer the methods of dimension reduction
and principal curves on a sphere. The existing R packages providing principal curves, such as
princurve (Hastie and Weingessel, 2015) and LPCM (Einbeck et al., 2015), are available only on
Euclidean space, not on a sphere or (Riemannian) manifold. In addition, most dimension reduction
methods on manifolds (Huckemann et al., 2010; Panaretos et al., 2014; Liu et al., 2017) involve
somewhat complex optimizations. The proposed package spherepc for R provides the state-of-the-
art principal curve technique on the sphere (Lee et al., 2021a) and comprehensively collects and
implements the existing methods (Fletcher et al., 2004; Hauberg, 2016).

The rest of this paper is organized as follows. The following section introduces the existing methods
for dimension reduction on the sphere and relevant functions covered in the package spherepc, which
is available on CRAN. Furthermore, their usages are discussed with examples in detail. Then, the
spherical principal curves proposed by Lee et al. (2021a) and principal curves of Hauberg (2016)
are briefly described. In addition, implementations of the SPC() and SPC.Hauberg() functions in
the spherepc are presented. The subsequent section discusses the local principal geodesics (LPG)
with the implementation of various simulated data, demonstrating its promising usability. In the
application session, all the mentioned methods are performed to analyze real seismological data.
Finally, conclusions are given in the last section.

2 Existing methods

Principal geodesic analysis

Principal geodesic analysis (PGA) proposed by Fletcher et al. (2004) can be regarded as a generalization
of principal component analysis (PCA) to Riemannian manifolds. In particular, Fletcher et al. (2004)
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performed dimension reduction of data on the Cartesian product space of the manifolds. In detail, the
data are projected onto the tangent spaces at the intrinsic means of each component of the manifolds;
thus, the given data are approximated as points on Euclidean vector space, and subsequently, PCA is
applied to the points. As a result, the dimension reduction can be performed through the inverse of
the tangent projections.

The principal geodesic analysis can be implemented by the PGA() function available in the spherepc.
The detailed usage of the PGA() function is described as follows.

PGA(data, col1 = "blue", col2 = "red")

Before using the PGA() function, it requires loading the packages rgl (Adler and Murdoch, 2020),
sphereplot (Robotham, 2013), and geosphere (Hijmans et al., 2017). The following codes yield an
implementation of the PGA() function.

#### for all simulated datasets, longitude and latitude are expressed in degrees
#### example 1: half-great circle data
> circle <- GenerateCircle(c(150, 60), radius = pi/2, T = 1000)
> sigma <- 2 # noise level
> half.circle <- circle[circle[, 1] < 0, , drop = FALSE]
> half.circle <- half.circle + sigma * rnorm(nrow(half.circle))
> PGA(half.circle)

#### example 2: S-shaped data
# the dataset consists of two parts: lon ~ Uniform[0, 20],
# lat = sqrt(20 * lon - lon^2) + N(0, sigma^2),
# lon ~ Uniform[-20, 0], lat = -sqrt(-20 * lon - lon^2) + N(0, sigma^2)
> n <- 500
> sigma <- 1 # noise level
> lon <- 60 * runif(n)
> lat <- (60 * lon - lon^2)^(1/2) + sigma * rnorm(n)
> simul.S1 <- cbind(lon, lat)
> lon2 <- -60 * runif(n)
> lat2 <- -(-60 * lon2 - lon2^2)^(1/2) + sigma * rnorm(n)
> simul.S2 <- cbind(lon2, lat2)
> simul.S <- rbind(simul.S1, simul.S2)
> PGA(simul.S)

Because a principal geodesic is always a great circle, the PGA() function is suitable for identifying the
global data trend. The implementations of half-circle and S-shaped data are displayed in Figure 1,
where the principal geodesic properly extracts the global trends in the half-great circle and S-shaped
data, while it cannot identify the circular variations in the S-shaped case. In addition, the arguments
and outputs of the PGA() function are described in Tables 1 and 2.

Figure 1: From left to right, half-great circle and S-shaped data (blue) and the results (red) of principal
geodesic analysis (PGA). The principal geodesic detects the global trends of the noisy half-great circle
and the S-shaped data but cannot identify the circular variation of the S-shaped data.
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Argument Description

data matrix or data frame consisting of spatial locations with two columns. Each
row represents longitude and latitude (denoted by degrees).

col1 color of data. The default is blue.
col2 color of the principal geodesic line. The default is red.

Table 1: Arguments of the PGA().

Output Description

plot plotting of the result in 3D graphics.
line spatial locations (longitude and latitude by degrees) of points in the princi-

pal geodesic line.

Table 2: Outputs of the PGA().

Principal circle

In a spherical surface, as shown in Figure 1, the principal geodesic analysis always results in a great
circle, which cannot be sufficient to identify the non-geodesic structure of data. The circle on a sphere
that minimizes a reconstruction error is called a principal circle, where the reconstruction error is
defined as the total sum of squares of geodesic distances between the circle and data points. However,
the existing method for generating the principal circle is still based on the tangent space approximation
and its inverse process, thereby leading to numerical errors. Lee et al. (2021a) have proposed an exact
principal circle in an intrinsic way and its practical algorithm based on gradient descent. The details
are described in Section 3 of Kim et al. (2020) and Appendix B of Lee et al. (2021b). The spherepc
package provides the PrincipalCircle() function to implement the intrinsic principal circle. Its usage
is followed by

PrincipalCircle(data, step.size = 1e-3, thres = 1e-5, maxit = 10000).

Argument Description

data matrix or data frame consisting of spatial locations (longitude and latitude
denoted by degrees) with two columns.

step.size step size of gradient descent algorithm. For convergence of the algorithm,
step.size is recommended to be below 0.01. The default is 1e-3.

thres threshold of the stopping condition. The default is 1e-5.
maxit maximum number of iterations. The default is 10000.

Table 3: Arguments of the PrincipalCircle().

The arguments of the PrincipalCircle() are described in Table 3, and its output is a three-
dimensional vector, where the first and second components are longitude and latitude (represented
by degrees), respectively. The last one is the radius of the principal circle. To display the circle, the
GenerateCircle() function should be implemented. Its usage is followed by

GenerateCircle(center, radius, T = 1000).

The output of the GenerateCircle() function is a matrix consisting of spatial locations (longitude
and latitude by degrees) with two columns, which can be plotted by the sphereplot::rgl.sphgrid()
and sphereplot::rgl.sphpoints() functions from the sphereplot package (Robotham, 2013). Note
that the sphereplot package depends on the rgl package (Adler and Murdoch, 2020). The detailed
arguments of the GenerateCircle() function are described in Table 4.

The following codes implement principal circles by the PrincipalCircle() and GenerateCircle()
functions.

## for all the following examples, longitude and latitude are denoted by degrees
#### example 1: half-great circle data
> circle <- GenerateCircle(c(150, 60), radius = pi/2, T = 1000)
> half.great.circle <- circle[circle[, 1] < 0, , drop = FALSE]
> sigma <- 2 # noise level
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Argument Description

center center of circle with spatial locations (longitude and latitude denoted by
degrees).

radius radius of circle. It should be range from 0 to π.
T the number of points that make up a circle. The points in a circle are equally

spaced. The default is 1000.

Table 4: Arguments of the GenerateCircle().

> half.great.circle <- half.great.circle + sigma * rnorm(nrow(half.great.circle))
## find a principal circle
> PC <- PrincipalCircle(half.great.circle)
> result <- GenerateCircle(PC[1:2], PC[3], T = 1000)
## plot the half-great circle data and principal circle
> sphereplot::rgl.sphgrid(col.lat = "black", col.long = "black")
> sphereplot::rgl.sphpoints(half.great.circle, radius = 1, col = "blue", size = 9)
> sphereplot::rgl.sphpoints(result, radius = 1, col = "red", size = 6)

#### example 2: circular data
> n <- 700 # the number of samples
> sigma <- 5 # noise level
> x <- seq(-180, 180, length.out = n)
> y <- 45 + sigma * rnorm(n)
> simul.circle <- cbind(x, y)
## find a principal circle
> PC <- PrincipalCircle(simul.circle)
> result <- GenerateCircle(PC[1:2], PC[3], T = 1000)
## plot the circular data and principal circle
> sphereplot::rgl.sphgrid(col.lat = "black", col.long = "black")
> sphereplot::rgl.sphpoints(simul.circle, radius = 1, col = "blue", size = 9)
> sphereplot::rgl.sphpoints(result, radius = 1, col = "red", size = 6)

The results of the principal circle are shown in Figure 2. As one can see, the principal circle identifies
the circular patterns of the noisy half-great circle and circular dataset well.

Figure 2: Half-great circle data and circular data (blue) and the results (red) of the principal circle from
left to right. The principal circle can identify the relatively small circular structure (right) and the great
circle structure (left).

3 Spherical principal curves

Principal curves proposed by Hastie and Stuetzle (1989) can be considered as a nonlinear generalization
of the principal component analysis in the sense that the principal curves pass through the middle of
given data and reserve a stationary property. The curve is a smooth function from a one-dimensional
closed interval to a given space; then, a curve f is said to be a principal curve of X or self-consistent if
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the curve satisfies
f (λ) = E

(
X | λ f (X) = λ

)
,

where f (λ f (x)) is the closest (projection) point in the curve f from the point x.

Hauberg (2016) provided an algorithm for principal curves on Riemannian manifolds. However,
Hauberg (2016) used approximations for finding the closest point of each data point, which may lead
to numerical errors. Recently, Lee et al. (2021a) presented theoretical results of principal curves on
spheres and a practical algorithm for constructing principal curves without any approximations, called
spherical principal curves (SPC), thereby causing the given data to be represented more precisely and
smoothly compared to principal curves of Hauberg (2016). In the both ways of extrinsic and intrinsic
approaches, the method of SPC updates curves on the spherical surfaces to represent the given data
and fits curves that satisfy the stationary conditions. For more details, refer to Kim et al. (2020) or Lee
et al. (2021a).

The package spherepc provides the SPC() function for implementing spherical principal curves
and the SPC.Hauberg() function for principal curves of Hauberg (2016). The usage of the SPC()
function is as follows.

SPC(data, q = 0.05, T = nrow(data), step.size = 1e-3, maxit = 30,
type = "Intrinsic", thres = 1e-2, deletePoints = FALSE,
plot.proj = FALSE, kernel = "quartic", col1 = "blue",
col2 = "green", col3 = "red").

The usage of the SPC.Hauberg() function is the same as that of the SPC() function. Before implement-
ing the SPC() and SPC.Hauberg() functions, it requires loading the rgl (Adler and Murdoch, 2020),
sphereplot (Robotham, 2013), and geosphere (Hijmans et al., 2017) packages. To implement the SPC()
and SPC.Hauberg() functions, we consider the waveform data used in Liu et al. (2017), Kim et al.
(2020), and Lee et al. (2021a). The generating equation of waveform is

ϕ = α · sin( f θ · π/180) + 10,

where ϕ, θ, α, and f denote the longitude, latitude in degrees, amplitude and frequency of the
waveform, respectively. θ is uniformly sampled from the interval [−180, 180] and a Gaussian random
noise from N(0, σ2) is added on each ϕ where σ = 2, 10. The generating waveform data and
implementations of the SPC() and SPC.Hauberg() functions are as follows.

#### longitude and latitude are expressed in degrees
#### example: waveform data
> n <- 200
> alpha <- 1/3; freq <- 4 # amplitude and frequency of wave
> sigma1 <- 2; sigma2 <- 10 # noise levels
> lon <- seq(-180, 180, length.out = n) # uniformly sampled longitude
> lat <- alpha * 180/pi * sin(freq * lon * pi/180) + 10 # latitude vector
## add Gaussian noises on the latitude vector
> lat1 <- lat + sigma1 * rnorm(length(lon))
> lat2 <- lat + sigma2 * rnorm(length(lon))
> wave1 <- cbind(lon, lat1); wave2 <- cbind(lon, lat2)
## implement Hauberg's principal curves to the waveform data
> SPC.Hauberg(wave1, q = 0.05)
## implement SPC to the (noisy) waveform data
> SPC(wave1, q = 0.05)
> SPC(wave2, q = 0.05)

The above codes generate the results in Figure 3. As one can see, the SPC() and SPC.Hauberg()
functions identify the waveform pattern of the simulated data. Especially, the SPC() generates a
smoother curve. The detailed arguments and outputs of the SPC() are described in Tables 5 and 6,
respectively, which are the same for the SPC.Hauberg().

Options for spherical principal curves

There are some options for the SPC() and SPC.Hauberg() functions. In particular, we implement using
the arguments plot.proj and deletePoints, described in Table 5. If plot.proj = TRUE is used, then
the projection line for each data point is plotted. If the argument deletePoints = TRUE is performed,
the SPC() function deletes the points in curves that do not have adjacent data for each expectation step
required to fit the principal curves, returning an open curve, i.e., a curve with endpoints. As a result,
the principal curves are more parsimonious since a redundant part of the resulting curves is removed.
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Figure 3: Left and middle: The waveform data (blue) and the results (red) of Hauberg’s principal
curves (left) and spherical principal curves. Right: The noisy waveform data (blue) and the result (red)
of spherical principal curves. All cases are implemented with q = 0.05. The two methods find the true
waveform of the data well. In particular, the spherical principal curve tends to be smoother.

Argument Description

data matrix or data frame consisting of spatial locations with two columns. Each
row represents longitude and latitude (denoted by degrees).

q numeric value of the smoothing parameter. The parameter plays the same
role, as the bandwidth does in kernel regression, in the SPC function. The
value should be a numeric value between 0.01 and 0.5. The default is 0.1.

T the number of points making up the resulting curve. The default is 1000.
step.size step size of the PrincipalCircle function. The default is 0.001. The result-

ing principal circle is used as an initialization of the SPC function.
maxit maximum number of iterations. The default is 30.
type type of mean on the sphere. The default is "Intrinsic" and the other choice

is "Extrinsic".
thres threshold of the stopping condition. The default is 0.01.
deletePoints logical value. The argument is an option of whether to delete points or

not. If deletePoints is FALSE, this function leaves the points in curves
that do not have adjacent data for each expectation step. As a result, the
function usually returns a closed curve, i.e. a curve without endpoints. If
deletePoints is TRUE, this function deletes the points in curves that do not
have adjacent data for each expectation step. As a result, The SPC function
usually returns an open curve, i.e. a curve with endpoints. The default is
FALSE.

plot.proj logical value. If the argument is TRUE, the projection line for each data
point is plotted. The default is FALSE.

kernel kind of kernel function. The default is the quartic kernel, and the alternative
is indicator or Gaussian.

col1 color of data. The default is blue.
col2 color of points in principal curves. The default is green.
col3 color of resulting principal curves. The default is red.

Table 5: Arguments of the SPC().

The SPC.Hauberg() function also contains the same options. For implementing these two arguments,
the following codes are performed through real earthquake data.

> data(Earthquake)
# collect spatial locations (longitude and latitude denoted by degrees) of data
> earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

#### example 1: plot the projection lines (option of plot.proj)
> SPC(earthquake, q = 0.1, plot.proj = TRUE)

#### example 2: open principal curves (option of deletePoints)
> SPC(earthquake, q = 0.04, deletePoints = TRUE)
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Output Description

plot plotting of the result in 3D graphics.
prin.curves spatial locations (denoted by degrees) of points in the resulting principal

curves.
line connecting lines between points in prin.curves.
converged whether or not the algorithm converged.
iteration the number of iterations of the algorithm.
recon.error sum of squared distances between the data and their projections.
num.dist.pt the number of distinct projections.

Table 6: Outputs of the SPC().

The results are illustrated in Figure 4. The left panel shows a closed principal curve (red) with projection
lines (black) of each data point onto the curve, and the right panel displays an open principal curve
due to the option deletePoints = TRUE. It is a parsimonious result because the redundant part on the
upper right side of the sphere is removed.

Figure 4: Left: Projection result (black) of SPC with q = 0.1. The spherical principal curve (red)
continuously represents the earthquake data (blue). Right: The open curve of SPC with q = 0.04 and
deletePoints=TRUE. The less q is, the more the curve overfits the data.

4 Local principal geodesics

Suppose that observations have a non-geodesic structure. Then the PGA may not be beneficial to
represent such data because PGA always results in a geodesic line. To overcome this problem, we
consider performing PGA locally and repeatedly to detect the non-geodesic and complex structures of
data, which can be interpreted as a localized version of the PGA and SPC. The newly proposed method
is called local principal geodesics (LPG). The main idea behind the LPG is that non-geodesic structures
can be regarded as a part of geodesic when viewed locally. Although there is no reference to the LPG
because research on LPG is underway, there is a localized principal curve method on Euclidean space
(Einbeck et al., 2005), which is similar to LPG and may share some motivation with the LPG. For more
details, refer to Einbeck et al. (2005).

The package spherepc offers the LPG() function to recognize various data structures, such as
spirals, zigzag, and tree data. The usage of the function is

LPG(data, scale = 0.04, tau = scale/3, nu = 0, maxpt = 500,
seed = NULL, kernel = "indicator", thres = 1e-4, col1 = "blue",
col2 = "green", col3 = "red").

Like the previous functions, before the LPG() function is implemented, it requires to load the rgl (Adler
and Murdoch, 2020), sphereplot (Robotham, 2013), and geosphere (Hijmans et al., 2017) packages.
The detailed arguments and outputs of this function are described in Tables 7 and 8. We implement
the following code to apply the LPG() function to the spiral, zigzag, and tree simulated data illustrated
in Figures 5, 6, and 7.
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## longitude and latitude are expressed in degrees
#### example 1: spiral data
> set.seed(40)
> n <- 900 # the number of samples
> sigma1 <- 1; sigma2 <- 2.5; # noise levels
> radius <- 73; slope <- pi/16 # radius and slope of the spiral
## polar coordinate of (longitude, latitude)
> r <- runif(n)^(2/3) * radius; theta <- -slope * r + 3
## transform to (longitude, latitude)
> correction <- (0.5 * r/radius + 0.3) # correction of noise level
> lon1 <- r * cos(theta) + correction * sigma1 * rnorm(n)
> lat1 <- r * sin(theta) + correction * sigma1 * rnorm(n)
> lon2 <- r * cos(theta) + correction * sigma2 * rnorm(n)
> lat2 <- r * sin(theta) + correction * sigma2 * rnorm(n)
> spiral1 <- cbind(lon1, lat1); spiral2 <- cbind(lon2, lat2)
## plot the spiral data
> rgl.sphgrid(col.lat = 'black', col.long = 'black')
> rgl.sphpoints(spiral1, radius = 1, col = 'blue', size = 12)
## implement the LPG to (noisy) spiral data
> LPG(spiral1, scale = 0.06, nu = 0.1, seed = 100)
> LPG(spiral2, scale = 0.12, nu = 0.1, seed = 100)

Figure 5: Left: Spiral data (blue) and the result (red) of LPG with scale = 0.06 and nu = 0.1. Right:
Noisy spiral data (blue) and the result (red) of LPG with scale = 0.12 and nu = 0.1. Local principal
geodesics represent the spiral patterns of the (noisy) spiral data. The larger the noise is, the larger scale
is required.

#### example 2: zigzag data
> set.seed(10)
> n <- 50 # the number of samples is 6 * n = 300
> sigma1 <- 2; sigma2 <- 5 # noise levels
> x1 <- x2 <- x3 <- x4 <- x5 <- x6 <- runif(n) * 20 - 20
> y1 <- x1 + 20 + sigma1 * rnorm(n); y2 <- -x2 + 20 + sigma1 * rnorm(n)
> y3 <- x3 + 60 + sigma1 * rnorm(n); y4 <- -x4 - 20 + sigma1 * rnorm(n)
> y5 <- x5 - 20 + sigma1 * rnorm(n); y6 <- -x6 - 60 + sigma1 * rnorm(n)
> x <- c(x1, x2, x3, x4, x5, x6); y <- c(y1, y2, y3, y4, y5, y6)
> simul.zigzag1 <- cbind(x, y)
## plot the zigzag data
> sphereplot::rgl.sphgrid(col.lat = 'black', col.long = 'black')
> sphereplot::rgl.sphpoints(simul.zigzag1, radius = 1, col = 'blue', size = 12)
## implement the LPG to the zigzag data
> LPG(simul.zigzag1, scale = 0.1, nu = 0.1, maxpt = 45, seed = 50)

## noisy zigzag data
> set.seed(10)
> z1 <- z2 <- z3 <- z4 <- z5 <- z6 <- runif(n) * 20 - 20
> w1 <- z1 + 20 + sigma2 * rnorm(n); w2 <- -z2 + 20 + sigma2 * rnorm(n)
> w3 <- z3 + 60 + sigma2 * rnorm(n); w4 <- -z4 - 20 + sigma2 * rnorm(n)
> w5 <- z5 - 20 + sigma2 * rnorm(n); w6 <- -z6 - 60 + sigma2 * rnorm(n)
> z <- c(z1, z2, z3, z4, z5, z6); w <- c(w1, w2, w3, w4, w5, w6)
> simul.zigzag2 <- cbind(z, w)
## implement the LPG to the noisy zigzag data
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> LPG(simul.zigzag2, scale = 0.2, nu = 0.1, maxpt = 18, seed = 20)

Figure 6: Left: zigzag data (blue). Middle: zigzag data (blue) and the result (red) of with scale = 0.1 and
nu = 0.1. Right: Noisy zigzag data (blue) and the result (red) of LPG with scale = 0.2, and nu = 0.1.
Local principal geodesics extract the zigzag structures of the (noisy) zigzag data properly. The larger
the noise is, the larger scale is needed.

Note that the LPG() function may return several curves. We now implement the function in a
complex simulation dataset composed of several curves. As shown in the left panel of Figure 7, the
tree object has twenty-six geodesic (linear) structures consisting of one stem, five branches, and twenty
subbranches. It is not informative to show the generating formula for the tree dataset. Instead, we
provide its generating code with explanatory notes as follows.

#### example 3: tree dataset
## the tree dataset consists of stem, branches and subbranches
## generate stem
> set.seed(10)
> n1 <- 200; n2 <- 100; n3 <- 15 # the number of samples in

# a stem, a branch, and a subbrach
> sigma1 <- 0.1; sigma2 <- 0.05; sigma3 <- 0.01 # noise levels
> noise1 <- sigma1 * rnorm(n1); noise2 <- sigma2 * rnorm(n2)
> noise3 <- sigma3 * rnorm(n3)
> l1 <- 70; l2 <- 20; l3 <- 1 # length of stem, branches, and subbranches
> rep1 <- l1 * runif(n1) # repeated part of stem
> stem <- cbind(0 + noise1, rep1 - 10)
## generate branch
> rep2 <- l2 * runif(n2) # repeated part of branch
> branch1 <- cbind(-rep2, rep2 + 10 + noise2); branch2 <- cbind(rep2, rep2 + noise2)
> branch3 <- cbind(rep2, rep2 + 20 + noise2)
> branch4 <- cbind(rep2, rep2 + 40 + noise2)
> branch5 <- cbind(-rep2, rep2 + 30 + noise2)
> branch <- rbind(branch1, branch2, branch3, branch4, branch5)
## generate subbranches
> rep3 <- l3 * runif(n3) # repeated part in subbranches
> branches1 <- cbind(rep3 - 10, rep3 + 20 + noise3)
> branches2 <- cbind(-rep3 + 10, rep3 + 10 + noise3)
> branches3 <- cbind(rep3 - 14, rep3 + 24 + noise3)
> branches4 <- cbind(-rep3 + 14, rep3 + 14 + noise3)
> branches5 <- cbind(-rep3 - 12, -rep3 + 22 + noise3)
> branches6 <- cbind(rep3 + 12, -rep3 + 12 + noise3)
> branches7 <- cbind(-rep3 - 16, -rep3 + 26 + noise3)
> branches8 <- cbind(rep3 + 16, -rep3 + 16 + noise3)
> branches9 <- cbind(rep3 + 10, -rep3 + 50 + noise3)
> branches10 <- cbind(-rep3 - 10, -rep3 + 40 + noise3)
> branches11 <- cbind(-rep3 + 12, rep3 + 52 + noise3)
> branches12 <- cbind(rep3 - 12, rep3 + 42 + noise3)
> branches13 <- cbind(rep3 + 14, -rep3 + 54 + noise3)
> branches14 <- cbind(-rep3 - 14, -rep3 + 44 + noise3)
> branches15 <- cbind(-rep3 + 16, rep3 + 56 + noise3)
> branches16 <- cbind(rep3 - 16, rep3 + 46 + noise3)
> branches17 <- cbind(-rep3 + 10, rep3 + 30 + noise3)
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> branches18 <- cbind(-rep3 + 14, rep3 + 34 + noise3)
> branches19 <- cbind(rep3 + 16, -rep3 + 36 + noise3)
> branches20 <- cbind(rep3 + 12, -rep3 + 32 + noise3)
> sub.branches <- rbind(branches1, branches2, branches3, branches4, branches5,
+ branches6, branches7, branches8, branches9, branches10, branches11, branches12,
+ branches13, branches14, branches15, branches16, branches17, branches18,
+ branches19, branches20)
## tree dataset consists of stem, branch, and subbranches
> tree <- rbind(stem, branch, sub.branches)
## plot the tree dataset
> sphereplot::rgl.sphgrid(col.lat = 'black', col.long = 'black')
> sphereplot::rgl.sphpoints(tree, radius = 1, col = 'blue', size = 12)
## implement the LPG function to the tree dataset
> LPG(tree, scale = 0.03, nu = 0.2, seed = 10)

Figure 7: Tree data (blue) and the result (red) of LPG with scale = 0.03 and nu=0.2. The LPG function
captures the complex structures of the data well, provided that scale and nu are properly chosen.

As displayed in Figures 5, 6, and 7, the LPG() function identifies the non-geodesic or complex
patterns of the simulated datasets well as long as the parameters of scale and nu are properly chosen.
The arguments and outputs of the function are respectively described in Tables 7 and 8.

Argument Description

data matrix or data frame consisting of spatial locations with two columns. Each
row represents longitude and latitude (denoted by degrees).

scale scale parameter for this function. The argument is the degree to which the
LPG function expresses data locally; thus, as the scale grows, the result of
the LPG becomes similar to that of the PGA function. The default is 0.4.

tau forwarding or backwarding distance of each step. It is empirically recom-
mended to choose a third of scale, which is the default of this argument.

nu parameter to alleviate bias of resulting curves. nu represents the viscosity of
the given data and it should be selected in [0, 1). The default is zero. When
nu is close to 1, the curve usually swirls similarly to the motion of a large
viscous fluid. The argument maxpt can control the swirling.

maxpt maximum number of points in each curve. The default is 500.
seed random seed number.
kernel kind of kernel function. The default is the indicator kernel, and the alterna-

tive is quartic or Gaussian.
thres threshold of the stopping condition for the IntrinsicMean function in the

process of the LPG function. The default is 1e-4.
col1 color of data. The default is blue.
col2 color of points in the resulting principal curves. The default is green.
col3 color of the resulting curves. The default is red.

Table 7: Arguments of the LPG().
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Output Description

plot plotting of the result in 3D graphics.
num.curves the number of resulting curves.
prin.curves spatial locations (represented by degrees) of points in the resulting curves.
line connecting lines between points in prin.curves.

Table 8: Outputs of the LPG().

5 Application

Figure 8: The distribution of significant earthquakes (8+ Mb magnitude), and their three-dimensional
visualization.

We use earthquake data from the U.S. Geological Survey, which has collected significant earth-
quakes (8+ Mb magnitude) around the Pacific Ocean since 1900. As shown in Figure 8, the data contain
77 observations distributed in the borders between the Eurasian, Pacific, North American, and Nazca
tectonic plates. The data have three features: the observations are distributed globally, scattered, and
form non-geodesic structures. Because the tectonic plates are constantly moving in different directions,
identifying the hidden patterns of borders is useful in geostatistics and seismology, as noted in Biau
and Fischer (2011); Mardia (2014). It can be possible to identify the borders of plates by applying
dimension reduction methods to the earthquake data.

To apply the aforementioned dimension reduction methods to the earthquake data, we use the
following code.

> data(Earthquake)
#### collect spatial locations (longitude and latitude by degrees) of data
> earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

#### example 1: principal geodesic analysis (PGA)
> PGA(earthquake)

#### example 2: principal circle
## get center and radius of principal circle
> circle <- PrincipalCircle(earthquake)
## generate the principal circle
> PC <- GenerateCircle(circle[1:2], circle[3], T = 1000)
## plot the principal circle
> sphereplot::rgl.sphgrid(col.long = "black", col.lat = "black")
> sphereplot::rgl.sphpoints(earthquake, radius = 1, col = "blue", size = 12)
> sphereplot::rgl.sphpoints(PC, radius = 1, col = "red", size = 9)

Examples 1 and 2 implement the principal geodesic and the principal circle, respectively. As illustrated
in Figure 9, the principal geodesic (left) fails to identify the variations of the earthquake data. The
principal circle (right) captures the global trend of the data, whereas the circle could not extract the
local variations of the data.
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Figure 9: Earthquake data (blue) and the results (red) of the principal geodesic analysis and principal
circle, from left to right. The principal geodesic fails to find the non-geodesic feature of the data, and
the principal circle captures the circular pattern but cannot identify the local variations of the data.

Figure 10: Earthquake data (blue) and implementation results (red) with q = 0.1 of the SPC.Hauberg
and SPC functions, respectively, from left to right. Both methods can represent the non-geodesic
feature of the earthquake data. The spherical principal curve particularly tends to be smoother.

#### example 3: spherical principal curves and principal curves of Hauberg
> SPC.Hauberg(earthquake, q = 0.1) # principal curves of Hauberg
> SPC(earthquake, q = 0.1) # spherical principal curves

Example 3 fits the spherical principal curve and Hauberg’s principal curve with q = 0.1. As shown in
Figure 10, both methods identify the curved feature of the earthquake data. The spherical principal
curve particularly tends to be more continuous than Hauberg’s principal curve.

#### example 4: spherical principal curves with q = 0.15, 0.1, 0.03, and 0.02
> SPC(earthquake, q = 0.15)
> SPC(earthquake, q = 0.1)
> SPC(earthquake, q = 0.03)
> SPC(earthquake, q = 0.02)

Example 4 applies the spherical principal curve to the earthquake data with varying q = 0.15, 0.1, 0.03, 0.02.
The parameter q plays a role in the bandwidth of the SPC() function. As shown in Figure 11, the
smaller q is, the rougher the curve is. On the contrary, the larger q is, the smoother the curve is.

#### example 5: local principal geodesics (LPG)
> LPG(earthquake, scale = 0.5, nu = 0.2, maxpt = 20, seed = 50)
> LPG(earthquake, scale = 0.4, nu = 0.3, maxpt = 22, seed = 50)

Lastly, example 5 implements the LPG() function with different scale and nu. As shown in Figure 12,
the function represents the curved pattern of the data, illustrating the slightly different features.
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Figure 11: From left to right and top to bottom: Earthquake data (blue) and the results (red) of the
SPC with q = 0.15, 0.1, 0.03 and 0.02. The larger the parameter q is, the smoother the curve is, while it
tends to underfit the data. Conversely, the smaller the parameter q is, the rougher the curve is.

Figure 12: From left to right, earthquake data (blue) and the results of the LPG function with scale = 0.5,
nu=0.2 and scale = 0.4, nu=0.3. Both the local principal geodesics implemented by different parameters
recognize the non-geodesic and scattered pattern of the data, illustrating the different features.

6 Conclusions

In this paper, the R package spherepc has implemented various dimension reduction methods on a
sphere. It includes not only principal geodesic analysis (PGA), principal circle, and principal curves
of Hauberg (2016) as existing methods but also spherical principal curves (SPC) and local principal
geodesics (LPG) as new approaches. The spherepc package has demonstrated its usefulness by
applying the functions to several simulation examples and real earthquake data. We believe that the
spherepc is helpful for applications in various fields, ranging from statistics to engineering, such as
geostatistics, image analysis, pattern recognition, and machine learning.
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