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Spherical Principal Curves
Jongmin Lee*, Jang-Hyun Kim*, Hee-Seok Oh

Abstract—This paper presents a new approach for dimension reduction of data observed on spherical surfaces. Several dimension
reduction techniques have been developed in recent years for non-Euclidean data analysis. As a pioneer work, Hauberg [1] attempted
to implement principal curves on Riemannian manifolds. However, this approach uses approximations to process data on Riemannian
manifolds, resulting in distorted results. This study proposes a new approach to project data onto a continuous curve to construct
principal curves on spherical surfaces. Our approach lies in the same line of Hastie and Stuetzle [2] that proposed principal curves for
data on Euclidean space. We further investigate the stationarity of the proposed principal curves that satisfy the self-consistency on
spherical surfaces. The results on the real data analysis and simulation examples show promising empirical characteristics of the
proposed approach.

Index Terms—Dimension reduction, Feature extraction, Principal geodesic analysis, Principal curve, Spherical domain.
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1 INTRODUCTION

A Variety of dimension reduction techniques have been
developed to represent and analyze data on Euclidean

space. Recently, there have been growing interests in the
analysis of non-Euclidean data with a variety of appli-
cations; directional data [3]–[5], shape data [6]–[9], and
motion analysis [1], [9]. For example, Siddiqi and Pizer
[10] and Cippitelli et al. [11] introduced a Cartesian prod-
uct of sphere S2 and R for medial representation and
skeleton data, respectively. For these representations, the
conventional dimension reduction methods on Euclidean
space have been modified by considering geodesics on non-
Euclidean space [7], [8], [12]–[15]. As a study closely related
to our proposal, Hauberg [1] developed principal curves
on Riemannian manifolds. However, Hauberg [1] uses an
approximate method by projecting data onto a finite set of
points, unlike the original principal curve [2] which projects
data onto a continuous curve. This approximate projection
causes a problem that may project different data points
onto a single point mistakenly. This study proposes a new
principal curve approach for spherical data by projecting the
data onto a continuous curve without any approximations
and improves the performance of dimension reduction. Our
proposed approach is two-fold: One is an extrinsic approach
that requires the setting of additional embedding space for
a given manifold. The other is an intrinsic approach that
does not need an embedding space. This intrinsic approach
is difficult to calculate [16], but it is necessary to develop
principal curves on generic manifolds. In this study, we in-
vestigate the stationarity of the principal curves on spherical
surfaces from both approaches.

The main contributions of this study can be summarized
as follows: (a) We propose both extrinsic and intrinsic ap-
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proaches to form principal curves on d-sphere Sd, d ≥ 2. (b)
We verify the stationarity of the proposed principal curves
on Sd. (c) We show the usefulness of the proposed method
through real data analysis and simulation study.

The detailed proofs of the theoretical properties of the
proposed principal curves method are given in the Supple-
mentary Material.

2 BACKGROUNDS

2.1 Principal Curves
The principal curve in [2] can be considered as a nonlinear
generalization of PCA that finds an affine subspace maxi-
mizing the variance of the projections of data. A curve is
a function from one-dimensional closed interval to a given
space, and a curve f is called self-consistent or a principal
curve of a random variable X if the curve satisfies

f(λ) = E[X|λf (X) = λ], (1)

where λf (x) is a projection index of a point x onto the
curve f . It implies that f(λ) is the average of all data points
projected onto f(λ) itself. One of the most important conse-
quences of the self-consistency is that the principal curve is
a critical point with respect to reconstruction error for small
perturbations [2]. However, it is difficult to formulate a prin-
cipal curve by solving the self-consistency equation of (1).
Thus, Hastie and Stuetzle [2] represented a curve as the first
order spline, connected by T points. Then, they iteratively
updated the curve to achieve the self-consistency condition
using the following two steps, projection and expectation: (a)
In the projection step, the given data are projected onto the
curve. (b) In the expectation step, T points of the curve are
updated to satisfy the self-consistency.

2.2 Means on Manifolds
Manifold is a topological space that locally resembles a
Euclidean space. Riemannian manifold M is a smooth man-
ifold equipped with smoothly varying inner product on
tangent space. A geodesic is the shortest curve between two
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points in M and its length is called geodesic distance, denoted
by dGeo(·, ·). The class of Riemannian manifold includes a
variety of spaces, such as Euclidean space Rd, sphere Sd [3]–
[5], RP d and CP d (Kendall’s shape space; [6]–[8]), PD(d)
(space of d × d symmetric positive definite matrices; [9],
[17]), and product space of S2 (medial representations; [10],
[12], [13]). For more details about Riemannian manifold, see
[18].

The concept of the expected value of a distribution can be
naturally extended to manifolds, called Fréchet mean. Given
a probability distribution Q on M with a distance ρ(·, ·), the
Fréchet mean m ∈M is defined as

arg min
m∈M

∫
ρ2(m,x)Q(dx).

The Fréchet mean with geodesic distance is termed intrinsic
mean [19]. Meanwhile, by embedding a given manifold M
into Euclidean space Rd, the Fréchet mean can be calculated
using Euclidean distance in Rd, called extrinsic mean. With
an embedding ξ : M ↪→ Rd, the extrinsic mean is defined as

arg min
m∈M

∫
‖ξ(m)− ξ(x)‖2Q(dx).

It is equivalent to the projection of the expectation in Rd to
M [19]. That is, given a projection mapping π : Rd → M
defined as π(y) = arg min

m∈M
‖ξ(m) − y‖, the extrinsic mean

can be calculated as π
( ∫

ξ(x)Q(dx)
)
. The extrinsic mean

is computationally efficient compared to the intrinsic mean
[20], and for a distribution Q supported in a small region,
the extrinsic mean is close with the intrinsic mean [21].

2.3 Principal Curves on Riemannian Manifolds
Hauberg [1] proposed principal curves on Riemannian
manifolds by expressing a curve as a set of T points,
f = {C1, . . . , CT }, joined by geodesics. The estimation
algorithm of the curve follows that of [2] with an approx-
imation. Specifically, the mean operation in the expectation
step is performed by intrinsic mean, and the projection is
conducted by finding the nearest point in f as

proj(x) = arg min
Ci∈f

dGeo
(
x,Ci

)
,

which is not an exact projection onto the continuous curve.

3 PROPOSED PRINCIPAL CURVES

This section presents our new exact principal curves on
d-sphere Sd for d ≥ 2 from both intrinsic and extrinsic
perspectives. We further investigate the stationarity of the
proposed principal curves.

3.1 Exact Projection Step on Sd

As mentioned in Section 2.3, the approach of Hauberg [1]
does not perform the exact projections onto curves. On
the other hand, the exact projections on Sd for d ≥ 2 are
carried out in our method, which results in more elaborated
principal curves. To this end, we parameterize the curve as
a set of T points joined by geodesics as in [1]. Specifically,
we first project the data point to each geodesic segment of
the curve and then obtain the exact projection on the curve

by choosing the closest geodesic segment. Let λf (x) be the
projection index of a point x to the curve f(λ) for λ ∈ [0, 1],

λf (x) = arg min
λ

dGeo
(
x, f(λ)

)
. (2)

The projection of x onto the curve can be obtained as
f
(
λf (x)

)
.

The following subsections describe a procedure for pro-
jecting a point onto a geodesic segment on Sd. Given A,
B, C ∈ Sd ⊂ Rd+1, we find the closest point to C on
the geodesic segment joining A and B. When A = B, the
process is obvious, and in the case of A = −B ∈ Rd+1, there
is no unique geodesic connecting A and B. Hence, we only
consider the case that A and B are linearly independent, i.e.,
(A · B)2 6= 1, where · denotes the dot product in Rd+1. We
first deal with the projection on S2 and then extend it into
hyperspherical cases.

3.1.1 Projection on S2

Before describing the projection procedure on S2, it is
important to notice that (A · B)2 6= 1 is equivalent to
A × B 6= 0, where × denotes the cross product in R3. In
addition, if A × B/ ‖A×B‖ = ±C , then any points on
geodesic through A and B have the same distance from C .
From now on, we assume A×B/ ‖A×B‖ 6= ±C .

Figure 1 shows the projection procedure. We define the
North Pole N concerning A and B as N = A×B

‖A×B‖ ∈ S2

and a center Q of the great circle through N and C as Q =
N×C
‖N×C‖ ∈ S2 that is contained in the great circle through
A and B. Then, the projection of C onto the great circle
through A and B, proj(C), becomes an intersection point of
two great circles, as shown in Figure 1a,

proj(C) = Q×N =
(A×B)× C
‖(A×B)× C‖

× (A×B)

‖A×B‖
∈ S2.

Note that proj(C) is not always included in the geodesic
segment ÃB joining A and B as Figure 1b. For this reason,
we define an indicator I = −

(
A− proj(C)

)
·
(
B− proj(C)

)
,

indicating whether proj(C) is inside ÃB or not, i.e., orthog-
onally projected onto ÃB or not. Finally, the projection of C
onto ÃB, proj

ĀB
(C), is

proj
ĀB

(C) =

®
proj(C), if I ≥ 0

arg minE∈{A,B} dGeo(C,E), if I < 0.

3.1.2 Projection on Hypersphere
For A,B,C ∈ Sd ⊂ Rd+1, if B · C = C · A = 0, then all
points on ÃB have the same geodesic distance of π/2 from
C , which is verified in Appendix A of the Supplementary
Material; hence, assume that A, B, and C do not satisfy
B ·C = C ·A = 0. Let V be a two-dimensional vector space
in Rd+1 spanned by A and B.

As shown in Figure 2, we aim to find the projection of C
onto V ∩Sd, proj(C), by following two steps: (Step 1) Locate
the projection of C onto V , C ′. (Step 2) Find the projection
of C ′ onto V ∩ Sd. Note that the resulting projection is
equivalent to the projection of C onto V ∩ Sd, proj(C). The
rigorous justification of the above procedure is provided in
Appendix A of the Supplementary Material.

(Step 1): We find the closest point C ′ ∈ V from C . Let
C ′ = µA + λB for µ, λ ∈ R. Then C ′ should satisfy the
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Figure 1: Illustration of the projection procedure on S2. (a) The case that C is projected inside ÃB, i.e., proj
ĀB

(C) = proj(C)
and I ≥ 0. The projection of C is an intersection point of two great circles. (b) The case that C is projected onto B in a
non-orthogonal way (red dotted line), i.e., proj(C) 6= proj

ĀB
(C) = B and I < 0. (c) An image of the sphere viewed from

above the Northern Hemisphere in the projection of C .
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Figure 2: Illustration of the projection procedure on Sd.

orthogonal condition, (C − C ′) · A = (C − C ′) · B = 0.
By plugging the equation C ′ = µA + λB into the above
condition and solving the systems of linear equations with
respect to µ and λ, it follows that

C ′ =
C ·A− (A ·B)(B · C)

1− (A ·B)2
A+

B · C − (A ·B)(C ·A)

1− (A ·B)2
B,

where the denominator is non-zero and C ′ 6= 0 ∈ Rd+1

because of the assumptions; (A · B)2 6= 1, and A, B, and C
do not satisfy B · C = C ·A = 0.

(Step 2): The projection of C ′ onto V ∩ Sd, proj(C), is
obtained by just normalizing C ′ so that it is in Sd. Therefore,
we have

proj(C) =
C ′

‖C ′‖

=

(
C ·A− (A ·B)(B · C)

)
A+

(
B · C − (A ·B)(C ·A)

)
B

‖(C ·A− (A ·B)(B · C)
)
A+

(
B · C − (A ·B)(C ·A)

)
B‖

.

Similarly, we define the indicator I = −
(
A − proj(C)

)
·(

B − proj(C)
)

to find the projection of C onto ÃB,
proj

ĀB
(C). Due to the fact that A, B, and proj(C) are in

the one-dimensional unit circle V ∩ Sd, we obtain I 6= 0
unless proj(C) = A or B. Since I is continuous with respect
to proj(C) ∈ V ∩ Sd, it indicates that whether proj(C) is in
ÃB or not. We finally obtain proj

ĀB
(C) as

proj
ĀB

(C) =

®
proj(C), if I ≥ 0

arg minE∈{A,B} dGeo(C,E), if I < 0.

Note that the distance between C and ÃB is the geodesic

distance from C to proj
ĀB

(C), which can be calculated as

dGeo(C,proj
ĀB

(C)) = arccos(C · proj
ĀB

(C)). (3)

3.2 Expectation Step on Sd

The expectation step follows the principal curve of Hauberg
[1], i.e., updates the weighted average with smoothing
that makes the curve closer to the self-consistency condi-
tion. Suppose that we have n data points D = {xi}ni=1

and the corresponding projection indices {λi}ni=1, where
λi = λf (xi) for i = 1, . . . , n. Let T denote the number
of points of an initial curve. Then, the local weighted
smoother iteratively updates the tth point of the principal
curve, Ct, with the weighted mean of data points. In this
study, we use a quadratic kernel k(λ) = (1 − λ2)2 · δ|λ|≤1,
as [1], and the weight of each data point is given by
wt,i = k(|λf (Ct)− λi|/σ), where σ = q · (length of f).

3.2.1 Extrinsic Approach
The extrinsic mean on Sd can be calculated by considering
the canonical embedding Sd ↪→ Rd+1. Specifically, for a
curve f = {C1, ..., CT } and each point Ct, the extrinsic
mean is obtained by averaging the data points represented
in Euclidean coordinates as

mt(D, f) =
n∑
i=1

wt,ixi/‖
n∑
i=1

wt,ixi‖, t = 1, . . . , T (4)

where ‖·‖ is the standard norm in Rd+1. Then Ct is updated
by mt(D, f). The extrinsic approach is advantageous in
terms of the computational complexity compared to the
intrinsic approach. Furthermore, the extrinsic way ensures
the stationarity of the principal curves on hyperspheres Sd

for d ≥ 2, which is discussed in Section 3.4.

3.2.2 Intrinsic Approach
From the intrinsic perspective, the weighted mean of data
points can be obtained by the optimization

mt(D, f) = arg min
x

n∑
i=1

wt,id
2
Geo(x, xi), t = 1, . . . , T, (5)

and then each Ct is updated by mt(D, f). The intrinsic
mean exists uniquely if the points are in an open hemisphere
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of Sd, i.e., ∃p ∈ Sd s.t. dGeo(xi, p) < π
2 for 1 ≤ i ≤ n [22].

Since the intrinsic mean cannot be obtained in a closed form,
to solve Equation (5), algorithms based on tangent space
approximation, such as [12], [22], can be used.

Before closing this section, as an alternative measure
of the centrality of data, the geometric median can be
considered to robustify the principal curves for a dataset
that might contain outliers instead of the extrinsic or in-
trinsic mean. Median principal curves and their associated
characteristics can be developed along with the same line of
our procedure. Because of the limitation of space, this part
is not discussed in the current paper.

3.3 Algorithm
3.3.1 Initialization
For a better estimation of principal curves, we initialize a
principal curve as a circle on d-sphere Sd. The detailed
descriptions of the circle and its algorithm are provided in
Appendix B of the Supplementary Material.

3.3.2 Spherical Principal Curves
The proposed spherical principal curves on Sd can be ob-
tained by Algorithm 1 below.

Algorithm 1 Spherical Principal Curves

Initialize curve f = {C1, ..., CT }.
Parameterize the curve as f(λ) by unit speed.
Calculate λf (xi) in Equation (2) for i = 1, . . . , n.
Calculate errors δ(D, f) =

∑n
i=1 d

2
Geo

(
xi, f

(
λf (xi)

))
.

while (∆δ(D, f) ≥ threshold) do
(Expectation) Ct ← mt(D, f) for t = 1, . . . , T .
Reparameterize the curve by unit speed.
(Projection) Calculate λf (xi) for i = 1, . . . , n.
Calculate δ(D, f) =

∑n
i=1 d

2
Geo

(
xi, f

(
λf (xi)

))
.

end while

Note that d2Geo
(
xi, f

(
λf (xi)

))
is calculated by (3). As

far as Euclidean space is concerned as embedding space,
the extrinsic approach is advantageous for computational
efficiency [20]. However, if the data points are not contained
within local regions at the expectation step, the intrinsic
method may have better performances than the extrinsic
one. Furthermore, the intrinsic approach can be attractive
because of its inherent metric.

3.4 Stationarity of Principal Curves
For a random vector X in Rd, d ∈ N, the stationarity of the
principal curve of X is given by [2] as

∂EX [d2(X, f + εg)]

∂ε

∣∣∣∣
ε=0

= 0, (6)

where f and g are smooth curves in Rd satisfying ‖g‖ ≤ 1
and ‖g′‖ ≤ 1, and d(X, f) denotes the distance from X to
the curve f .

However, since spheres are not vector spaces such as
Rd, additions are not directly defined on spheres. Thus, it
is necessary to redefine some concepts, such as addition

and perturbation, in order to extend the properties of the
principal curves in Euclidean space to spheres. To this end,
we conversely consider f + g instead of g. Specifically, let
f and f + g be smooth curves on d-sphere parameterized
with λ ∈ [0, 1]. Then, we define f + εg in a pointwise sense
as follows.

Definition 1. For a, b ∈ Sd and ε ∈ [0, 1], div(a, b, ε) is a set of
points on geodesics between a and b satisfying ∀c ∈ div(a, b, ε),
dGeo(a, c) = εdGeo(a, b) and c is on a geodesic between a and b.

Note that if dGeo(a, b) < π, then the geodesic between
a and b on Sd is unique. In this case, div(a, b, ε) is a single
point set and div(a, b,−ε) can be defined as a reflection of
div(a, b, ε) with respect to a.

Definition 2. Let f and f + g be smooth curves on Sd pa-
rameterized with λ ∈ [0, 1] satisfying ‖g‖ < π, where ‖g‖ :=
maxλ∈[0,1] dGeo

(
f(λ), (f+g)(λ)

)
. Then, for ε ∈ [−1, 1], f+εg

is a curve on Sd, where (f + εg)(λ) = div(f(λ), (f + g)(λ), ε),
∀λ ∈ [0, 1].

Note that f + εg is a smooth curve on Sd. For a detailed
proof, refer to Appendix C in the Supplementary Material.
Let X be a random vector on Sd that has a probability
density function. Then, we call f as an extrinsic principal
curve of X , if f is self-consistent with X in the embedding
space as

π
(
E[ξ(X)|λf (X) = λ]

)
= f(λ) for a.e. λ,

where ξ : Sd ↪→ Rd+1 is the canonical embedding and π :
Rd+1 \ {0} → Sd by X → X

‖X‖ is the standard projection
(retraction) from Rd+1 to Sd. In analogy to Equation (6),
we provide the following theorem on spheres. Note that
· represents dot-product and dGeo(X, f + εg) denotes the
geodesic distance from X to the curve f + εg.

Definition 3. ‖g′‖ := maxλ∈[0,1] ‖g′(λ)‖, where ‖g′(λ)‖ =

maxε∈[0,1]

∥∥∥∂2(f+εg)(λ)
∂λ∂ε

∥∥∥.

Theorem 1. Let f , f + g : [0, 1]→ Sd, d ≥ 2 be smooth curves
satisfying ‖g‖ < π and ‖g′‖ ≤ 1. Let X be a random vector
on S2 or a random vector on Sd, d ≥ 3 with X ∈ C(ζ), where
C(ζ) := {x ∈ Sd | |f ′′(λf (x)) · x| > ζ} for a small ζ > 0.
Then f is an extrinsic principal curve of X if and only if

∂EX [cos
(
dGeo(X, f + εg)

)
]

∂ε

∣∣∣∣
ε=0

= 0. (7)

Proof. See Appendix C in the Supplementary Material.

Note that since 2− 2 cosx ≈ x2 for small x, Equation (7)
can be interpreted as an analogy of Equation (6).

We further consider the intrinsic perspective of the sta-
tionarity. We define a curve f as an intrinsic principal curve
of X if the intrinsic mean of X conditioned on λf (X) = λ
is equal to f(λ) for a.e. λ,

Eint[X|λf (X) = λ] = f(λ) for a.e. λ,

where Eint[·] represents an intrinsic mean of a random
variable on Sd.

Note that the intrinsic mean of a random variable Y on
Sd is unique if dGeo(Y, p) < π

2 a.s. for ∃p ∈ Sd, i.e., the
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Figure 3: The distribution of earthquake data (left). The proposed extrinsic principal curves of T = 500 with q = 0.01
(middle) and q = 0.2 (right). Blue points represent the observations and red lines are the fitted curves.

support of Y is in an open hemisphere [23]. We verify that
the intrinsic principal curves on S2 satisfy the stationarity.

Theorem 2. Let f , f + g : [0, 1] → S2 be smooth curves
satisfying ‖g‖ < π and ‖g′‖ ≤ 1. Let X a random vector on S2

with X ∈ B(ζ), where B(ζ) := {x ∈ S2 | |f ′′(λf (x)) ·x| > ζ}
for a small ζ > 0. Then, f is an intrinsic principal curve of X if
and only if

∂EX [d2Geo(X, f + εg)]

∂ε

∣∣∣∣
ε=0

= 0. (8)

Proof. See Appendix C in the Supplementary Material.

The constraints C(ζ) and B(ζ) in Theorems 1 and 2
are required to ensure the differentiation of the projection
index λf+εg(X) with respect to ε. Note that the constraints
are almost negligible by setting ζ infinitesimally small; see
Lemmas 4 and 6 of Appendix C in the Supplementary
Material for details.

We finally remark that the stationarity of the principal
curves in Euclidean space provides a rationale for the prin-
cipal curves of [2] that is a nonlinear generalization of the
linear principal component. Following the same line, the
above stationarity results provide a theoretical justification
that the proposed approaches directly generalize the prin-
cipal curves by [2] from Euclidean space to spheres. In the
intrinsic approach, the case of Sd with d ≥ 3 remains a
challenge.

4 NUMERICAL EXPERIMENTS

This section conducts numerical experiments with real
data analysis and simulated examples to assess the
practical performance of the proposed methods. The
experiment can be reproduced at https://github.com/
Janghyun1230/Spherical-Principal-Curve. Moreover, we
provide R package, spherepc at https://cran.r-project.org/
package=spherepc, which implements the spherical princi-
pal curves for a variety of datasets lying on S2.

4.1 Real Data Analysis
4.1.1 Earthquake Data on S2

We consider earthquake data from the U.S. Geological Sur-
vey (https://earthquake.usgs.gov/earthquakes/map/) in
Figure 3 that represent the distribution of significant earth-
quakes (8+ Mb magnitude) around the Pacific Ocean since

1900. As shown in the figure, 77 observations are distributed
in the vicinity of the borders between the Pacific, Eurasian,
and Nazca plates. Since the plates are gradually moving
towards different directions, recognizing the unrevealed
patterns of borders provides essential information about
seismological events such as earthquakes and volcanoes [3],
[24]. In the following experiment, we utilize the spherical
principal curves to recover the plates’ borders by extracting
curvilinear features of the observations.

We have implemented the proposed principal curves
connected by T = 500, with various values of hyperpa-
rameter q that is the bandwidth of kernel in the expectation
step. Figure 3 shows the results with q = 0.01 and 0.2. We
observe that a small q produces a wiggly and overfitted
curve. It is noteworthy that the choice of q affects the quality
of the fitted curve. Duchamp and Stuetzle [25] proved that
principal curves are always the saddle point of the expec-
tation of the squared distance from a particular random
variable, pointing out that cross-validation is not reliable for
the model selection of principal curves, i.e., determination
of q. Kégl et al. [26] defined principal curves that minimize
reconstruction errors in the constraint of the curve length,
but used a heuristic way to determine the corresponding
hyperparameter, the length of the curves. In the current
study, the value of q is selected by visual inspection through
all our experiments. An objective way to select q is left for
future research.

Figure 4: Projection results by the proposed extrinsic method
(left) and Hauberg’s method (right) with T = 77 and q =
0.1.

As one can see, the proposed extrinsic curve represents
a given data as a continuous curve, while the Hauberg
method projects several local data at one point.
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We further compare the proposed extrinsic principal
curves with the method of Hauberg [1]. Figure 4 shows both
results with q = 0.1, where the purple lines represent the fit-
ted curves, and the blue lines represent the projections from
the data to the curve. The proposed extrinsic principal curve
continuously represents the given data on the curve, while
the method of Hauberg projects several local points to a sin-
gle location. The comparison is further summarized in Table
1. As a result, the number of distinct projections (# proj) by
our method is much larger than that of Hauberg’s method.
It implies that the proposed principal curve continuously
represents the data, whereas the method of Hauberg tends
to cluster the data. We also measure a reconstruction error
(RE) defined as

∑n
i=1 d

2
Geo

(
xi, f̂

(
λf̂ (xi)

))
with observations

{xi}ni=1 and fitted values {f̂
(
λf̂ (xi)

)
}ni=1. As listed in Table

1, our method outperforms Hauberg’s method in terms of
the reconstruction error.

Table 1: The values of RE and # proj by the proposed
methods and Hauberg’s method on the earthquake data

Extrinsic Intrinsic Hauberg

q = 0.2
RE 2.662 4.391 12.067

T = 77

# proj 74/77 72/77 22/77

q = 0.1
RE 0.463 0.467 4.920

# proj 76/77 76/77 9/77

q = 0.05
RE 0.359 0.359 1.313

# proj 74/77 73/77 16/77

q = 0.01
RE 0.061 0.061 0.227

# proj 75/77 75/77 27/77

q = 0.2
RE 2.193 3.460 11.300

T = 500

# proj 75/77 72/77 30/77

q = 0.1
RE 0.715 0.732 3.903

# proj 75/77 74/77 18/77

q = 0.05
RE 0.298 0.200 0.963

# proj 75/77 75/77 27/77

q = 0.01
RE 0.036 0.036 0.121

# proj 75/77 75/77 37/77

4.1.2 Motion Capture Data on S2

We now consider a benchmark data on S2, motion capture
data of a person walking in a circular pattern [1], [9], [27],
[28]. The data represent the orientation of the person’s left
thigh bone and naturally lie on S2. There are 338 data points
in the data set that are periodic.

Figure 5 shows both results with q = 0.03, 0.05, where
the red and yellow lines represent the fitted curves, and
the blue lines represent the projections from the data to the
curves. The proposed extrinsic principal curve continuously
represents the given data on the curve, while the method of
Hauberg projects several local points to a single location.
Furthermore, Table 2 lists the quantitative results of the
proposed methods and the method of Hauberg [1]. As listed,
the proposed methods outperform Hauberg’s method in
terms of the reconstruction error and represent the data
more precisely.

4.2 Simulation Study
4.2.1 Simulation on S2

We consider two types of functions on the unit sphere with
spherical coordinates (r = 1, θ, φ), where θ is the azimuthal

Figure 5: Results by the proposed extrinsic method (red) and
Hauberg’s method (yellow) with T = 100. From top left to
bottom right, results with q = 0.03 and q = 0.05, projection
results by the two methods (blue) with q = 0.05.

Table 2: The values of RE and # proj by the proposed
methods and Hauberg’s method on the motion capture data

Extrinsic Intrinsic Hauberg

q = 0.05
RE 2.502 2.504 2.534

T = 500

# proj 336/338 337/338 223/338

q = 0.03
RE 1.741 1.741 2.637

# proj 332/338 333/338 119/338

q = 0.01
RE 0.669 0.669 1.253

# proj 315/338 317/338 92/338

angle and φ is the polar angle: (Circle) it is formed of (r =
1, θ, φ) with 0 ≤ θ < 2π and φ = π/4. (Wave) it is defined
as (r = 1, θ, φ) with 0 ≤ θ < 2π and φ = α sin(θf) + π/2,
where the frequency f = 4 and the amplitude α = 1/3.

For each type of functions, we generate n = 100 data
points by sampling θ uniformly in [0, 2π) and adding Gaus-
sian noises sampled from N(0, σ2) to φ. Figure 6 shows the
results on the waveform data with T = 500 and q = 0.05.
Both extrinsic and intrinsic principal curves extract the
true waveform effectively, while Hauberg’s approach yields
a rather sharp curve. In the Supplementary Material, we
provide additional visual results with various parameter
settings.

We next quantify the performance of the proposed meth-
ods by measuring a reconstruction error between the fitted
and true curves to measure the reconstruction ability of
the methods. For the fitted curve f̂ , the reconstruction
error is defined as

∑n
i=1 d

2
Geo

(
xi, f̂

(
λf̂ (x̃i)

))
, where {xi}ni=1

denote the true values of the generating curves and {x̃i}ni=1

denote noisy sample values. We also count the number
of distinct projection points to evaluate the continuity of
resulting curves of the methods. Moreover, we compare the
proposed spherical principal curves with Hauberg’s method
over various settings T = 100, 500, q = 0.05, 0.03, 0.01, and
σ = 0.07, 0.1.
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Figure 6: From left to right: True waveform and noisy data (blue dots), the extrinsic principal curve, the intrinsic principal
curve, and the curve by Hauberg’s method with T = 100.

Table 3: Averages of reconstruction errors and their standard deviations in the parentheses by each method

True form Method
Noise level

σ = 0.07 σ = 0.1

q = 0.05 q = 0.03 q = 0.01 q = 0.05 q = 0.03 q = 0.01

T = 100
Circle Proposed (intrinsic) 0.093 (0.026) 0.12 (0.027) 0.095 (0.013) 0.201 (0.048) 0.216 (0.046) 0.137 (0.025)

Hauberg 0.117 (0.073) 0.408 (0.149) 0.298 (0.038) 0.370 (0.205) 0.74 (0.208) 0.494 (0.063)

Wave Proposed (intrinsic) 0.71 (0.114) 0.329 (0.097) 0.084 (0.023) 0.673 (0.150) 0.346 (0.113) 0.124 (0.038)
Hauberg 2.444 (0.059) 2.158 (0.155) 0.568 (0.055) 2.544 (0.118) 2.103 (0.563) 0.796 (0.094)

T = 500
Circle Proposed (intrinsic) 0.088 (0.026) 0.118 (0.023) 0.091 (0.018) 0.21 (0.050) 0.207 (0.043) 0.129 (0.018)

Hauberg 0.089 (0.027) 0.205 (0.079) 0.269 (0.034) 0.233 (0.087) 0.453 (0.177) 0.397 (0.079)

Wave Proposed (intrinsic) 0.535 (0.065) 0.239 (0.056) 0.072 (0.020) 0.574 (0.094) 0.237 (0.082) 0.110 (0.031)
Hauberg 2.006 (0.697) 1.831 (0.146) 0.529 (0.043) 1.906 (0.847) 1.756 (0.696) 0.688 (0.073)

Table 3 lists the average values of reconstruction er-
rors and their standard deviations over 50 simulation sets.
As listed, the proposed principal curves outperform the
Hauberg’s method, recovering the true curves accurately.
Table 4 provides the average values of distinct projection
points and their standard deviations. The proposed method
provides a very large number of distinct projection points
compared to that of Hauberg’s method. Overall, as listed in
Table 3 and 4, our methods perform better than Hauberg’s
method, including the case that the number of points of the
curves (T = 500) is much larger than the number of data
points (n = 100). In addition, the results of the intrinsic
and extrinsic principal curves are similar in terms of both
reconstruction error and the number of distinct projection
points, which appear with the fact that the intrinsic and
extrinsic means are almost identical for localized data, as
noted in [21]. The results of the extrinsic approach are almost
identical to those of the intrinsic one, and hence are omitted.

4.2.2 Simulation on Hypersphere
We conduct a simulation study on a hypersphere. To
this end, we consider a waveform simulated data on
S4 represented by four angular parameters ϕ1, ϕ2, ϕ3 ∈
[0, π), and ϕ4 ∈ [0, 2π). The explicit representation on Sd,
d ≥ 3 is given in Appendix B.3 of the Supplementary
Material. Mimicking a waveform dataset on S2 in Section
4.2.1, we craft simulation sets (r = 1, ϕ1, ϕ2, ϕ3, ϕ4) with
ϕ1 = ϕ2 = ϕ3 = α sin(ϕ4f) + π/2 and 0 ≤ ϕ4 < 2π,
frequency f = 2, and amplitude α = 1/2. Data points of
n = 200 are generated by sampling ϕ4 uniformly in [0, 2π)
and adding the random noises sampled from N(0, σ2) to
ϕ1 with σ = 0.05. Table 5 lists the average values of
reconstruction errors defined on Section 4.2.1 and their

standard deviations over 50 simulation sets for each method
with T = 300. As listed, the proposed principal curves
outperform Hauberg’s method, recovering the true curves
more closely.

5 CONCLUDING REMARKS

In this paper, new principal curves are proposed for data
on spheres. The extrinsic and intrinsic perspectives are
considered, and the stationarity of the principal curves is
investigated, supporting that the proposed methods are
a direct generalization of the principal curves by [2] to
spheres.

For the data on Sd, both extrinsic and intrinsic ap-
proaches yield similar performance. However, it is ques-
tionable whether the extrinsic approach of non-isotropic
manifolds, like a torus, will still be valid. For some non-
isotropic manifolds, the intrinsic approach may yield better
performance because of its inherency. Finally, the principal
curve algorithm proposed in this study is a top-down ap-
proach. It approximates the structure of data with an initial
curve and then gradually improves the estimation. How-
ever, for complex structures divided into several pieces or
containing intersections, the initialization can significantly
affect the final estimate. To cope with this limitation, it is
worth studying a bottom-up approach. This approach to
spheres is left for future research.
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Table 4: Averages of distinct projection points and their standard deviations in the parentheses

True form Method
Noise level

σ = 0.07 σ = 0.1

q = 0.05 q = 0.03 q = 0.01 q = 0.05 q = 0.03 q = 0.01

T = 100
Circle proposed (intrinsic) 99.02 (0.32) 98.92 (0.34) 98.84 (0.47) 99.08 (0.34) 98.72 (1.11) 98.20 (1.12)

Hauberg 87.70 (7.95) 56.68 (17.99) 64.70 (3.22) 69.80 (12.28) 47.04 (15.44) 60.42 (2.83)

Wave proposed (intrinsic) 93.36 (4.47) 97.28 (2.13) 99.32 (0.51) 95.82 (3.77) 96.72 (2.22) 99.10 (0.65)
Hauberg 22.72 (2.77) 25.94 (2.65) 62.14 (2.49) 24.5 (3.63) 32.16 (16.72) 58.84 (3.04)

T = 500
Circle proposed (intrinsic) 99.08 (0.27) 99.02 (0.25) 98.76 (0.69) 99.1 (0.30) 99.04 (0.49) 99.30 (1.09)

Hauberg 97.8 (1.47) 89 (8.63) 79.28 (4.60) 93.64 (5.29) 78.72 (13.08) 73.86 (7.28)

Wave proposed (intrinsic) 99.18 (0.39) 98.5 (1.27) 99.26 (0.56) 99.22 (0.42) 98.84 (1.20) 99.18 (0.66)
Hauberg 45.2 (24.8) 43.38 (3.72) 73.20 (3.42) 52.04 (26.81) 50.64 (19.99) 71.52 (4.38)

Table 5: A simulation result of waveform data on S4

Method q = 0.03 q = 0.005 q = 0.002

Proposed (extrinsic) 0.211 (0.230) 0.179 (0.162) 0.199 (0.235)
Proposed (intrinsic) 0.729 (0.493) 0.267 (0.264) 0.150 (0.232)

Hauberg 1.990 (0.815) 0.481 (0.215) 0.357 (0.251)
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APPENDIX A
JUSTIFICATION OF THE PROJECTION STEPS ON Sd

Let A = (a1, a2, . . . , ad+1), B = (b1, b2, . . . , bd+1), C =
(c1, c2, . . . , cd+1) ∈ Sd ⊂ Rd+1 with (A · B)2 6= 1. Any point
P on ÃB is denoted by P = µA + λB for µ, λ ∈ R+ with
µ2 + λ2 = 1. If B · C = C ·A = 0, then we have

dGeo(C,P ) = arccos
(
C · (µA+ λB)

)
= π/2.

Hence, any points on ÃB have the same geodesic distance
of π/2 from C. We may assume that A, B, and C do not
satisfy B · C = C ·A = 0.

The orthogonal complement of V in Rd+1, V ⊥, has a di-
mension of d−1, owing to the fact that Rd+1 = V ⊕V ⊥ with
⊕ denoting the direct sum. As a column vector notation, we
choose an orthonormal basis for V as R1, R2 ∈ Rd+1 and an
orthonormal basis for V ⊥ as R3, R4, . . . , Rd+1 ∈ Rd+1. De-
fine a (d+1)×(d+1) matrix R = [R1, R2, R3, . . . , Rd, Rd+1]T .
Clearly, R is a rotation (orthogonal) matrix, i.e. R ∈
O(n) =

{
X ∈Md+1,d+1(R) | XTX = I

}
and satisfies that

RA = (ã1, ã2, 0, 0, . . . , 0) and RB = (b̃1, b̃2, 0, 0, . . . , 0). Let
Ã = RA, B̃ = RB, and C̃ = RC = (c̃1, c̃2, . . . , c̃d, c̃d+1).
Let Ṽ be a two-dimensional vector space spanned by Ã and
B̃, as shown in the right panel of Figure 1. It follows that
Ṽ = {x = (x1, x2, x3, . . . , xd+1) | x3 = x4 = · · · = xd+1 = 0}.
We denote the projection of C̃ onto Ṽ as C̃ ′ =
(c̃1, c̃2, 0, . . . , 0) ∈ Rd+1 with c̃21 + c̃22 6= 0. For any P̃ =
(p̃1, p̃2, 0, . . . , 0) ∈ Ṽ ∩ Sd, it follows that

dGeo(C̃, P̃ ) = arccos(c̃1p̃1 + c̃2p̃2) ≥ arccos(
»
c̃21 + c̃22), (1)

where the last inequality holds due to the Cauchy-Schwarz
inequality (c̃1p̃1 + c̃2p̃2)2 ≤ (c̃21 + c̃22)(p̃21 + p̃22) = (c̃21 + c̃22).
The equality of (1) holds when (p̃1, p̃2) = t(c̃1, c̃2) for some
t ∈ R+. It means that the closest point P̃ on Ṽ ∩ Sd from C̃
is found by normalizing C̃ ′ so that it is in Sd. Since R is an
orthogonal matrix, for any P ∈ V ∩Sd and P̃ = RP ∈ Ṽ ∩Sd,
it follows, as a column vector notation, that

dGeo(C̃, P̃ ) = arccos(C̃T P̃ ) = arccos(CTRTRP )

= arccos(CTP )

= dGeo(C,P ).

Accordingly, proj(C) is obtained by applying R−1 to proj(C̃)
that is the projection of C̃ onto Ṽ ∩ Sd. Since the rotation is

* The first two authors contributed equally to this work.

a rigid motion, it completes the proof.
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Figure 1: (Left) The projection process of C onto the one-
dimensional great circle V ∩ Sd (red) in a hypersphere Sd ⊂
Rd+1: (i) find the projection of C onto V , C ′ and (ii) obtain
the projection of C ′ onto V ∩Sd, proj(C). (Right) The rotated
configuration of the objects.

APPENDIX B
ENHANCEMENT OF PRINCIPAL CIRCLE FOR INITIAL-
IZATION

Methods for fitting circles to data on S2 are actively used in
many applications, especially in astronomy and geology, to
recognize undisclosed patterns of data [1], [2]. This section
improves the principal circle to use the initialization of the
principal curves proposed in Section 3.

B.1 Principal Geodesic and Principal Circle
The principal curve algorithm of [3] uses the first principal
component as the initial curve, which is easily calculated
by singular value decomposition (SVD) of the data matrix
in Euclidean space. Along with this line, the proposed
principal curve algorithm in Section 4 requires an initial
curve. The principal geodesic analysis (PGA) by [4] can be
considered as a generalization of PCA that performs dimen-
sion reduction of data on the Cartesian product of simple
manifolds, such as R3, S2, and R+. To this end, Fletcher et
al. [4] projected each manifold component of the data into a
tangent space at the intrinsic mean of each component. As
a result of the tangent space approximation of each compo-
nent, data are approximated by points in Euclidean space, so
applying PCA allows dimension reduction to be performed
through the inverse process of the tangent projection, i.e.
exponential map that preserves a distance and angle at a
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Figure 2: (Left) Spherical distribution of significant earth-
quakes (blue) with its intrinsic mean (green), the result
(pink) by PGA, and the result (red) by our proposed prin-
cipal circle. (Right) Circular simulated data (blue) with its
intrinsic mean (green), the result (pink) by PGA, and the
result (red) by our proposed principal circle.

base point. For spherical cases, they mainly perform tangent
space projection using an inverse exponential map, called
log map. The explicit forms of exponential and log maps of
S2 are described in [4], [5], [6].

However, PGA always results in a great circle going
through the intrinsic mean on the sphere, as shown in
Figure 2, and the class of great circles on a sphere is
sometimes limited to suitably fit a dataset on the sphere [5],
[7]. For example, the left panel of Figure 2 shows earthquake
data from the U.S. Geological Survey showing the location
(blue dot) of significant earthquakes with Mb magnitude 8
or higher around the Pacific since 1900. The data will be
analyzed in detail in Section 4. In Figure 2, while the result
(pink) by PGA does not fit the data correctly, our principal
circle (red) in Section B.2 of this Appendix improves the
representation of the data. Further, in the right panel of Fig-
ure 2, our principal circle suitably fits the circular simulated
data, whereas the result (pink) by PGA does not capture
the variation of the data. The PGA’s failure stems from the
fact that the above two data sets are far from their intrinsic
means, as noted in [5], [6], [7].

In the literature, there is an attempt by [5] that gen-
eralizes the PGA to a circle on S2. The circle on S2 that
minimizes a reconstruction error is called principal circle,
where the reconstruction error is defined as the total sum of
squares of the geodesic distance between the curve and the
data. Jung et al. [5] used a double iteration algorithm that
uses the log map to project the data into the tangent space
and then finds the principal circle. However, this approach
has two problems. First, using the tangent approximation
when minimizing the distance causes numerical errors. If
the data points are located away from the mean, the nu-
merical errors increase considerably because there is no
local isometry between the sphere and its tangent plane
according to the Gauss’s Theorema Egregium (see p. 363-370
of [8] or Ch 8 of [9] for details). For example, Figure 3 shows
simulated data, where the underlying structure is a great cir-
cle, and the intrinsic mean is the North Pole (0, 0, 1), where
the data points are mostly concentrated around the North
Pole. Second, due to the topological difference between the
sphere and the plane, the existence of principal circles in the
tangent plane is not guaranteed. From the compactness of
the sphere, the least-squares circle always exists regardless

C
"#$

%

Figure 3: (Top left) Simulated data points (blue) with the
intrinsic mean (0, 0, 1) (green), and the result by our pro-
posed principal circle (red). (Top right) The projected points
from the sphere onto the tangent plane at C = (0, 0, 1). (Bot-
tom) The projected points viewed from above the Northern
Hemisphere.

of the data structure. It is an advantage of the intrinsic
approaches. On the other hand, the least-squares circle does
not exist if the data points projected onto the tangent space
at their intrinsic mean are collinear, as shown in Figure 3.
It coincides that several circle fitting procedures in a plane,
such as [10] and [11], fail when the data points are collinear,
as noted in [12]. Moreover in this case, the (tangent) plane
cannot consider the periodicity of the data, as opposed to
the sphere in Figure 3. Ignoring the periodic structure of
data, as noted in [13], reduces the efficiency of a method.

This study proposes a new principal circle that does
not rely on tangent projection for better initialization of the
proposed principal curve presented in Section 3. We obtain
the constraint-free optimization problem by expressing the
center of the circle using the spherical coordinate system in
Sections B.2 and B.3.

B.2 Exact Principal Circle

For our principal circle, we consider an intrinsic optimiza-
tion algorithm that does not use any approximations. Let
dGeo(x, y) be the geodesic distance between x, y ∈ S2. For a
given dataset D and a circle C on S2, let δ(D,C) be the sum
of squares of distances between circle and data, defined as

δ(D,C) =
∑
x∈D

dGeo
(
x,projC(x)

)2
,

where projC(x) denotes a projection of x on C. The goal is
to find a circle C on S2 that minimizes δ(D,C). To solve this
optimization problem, we represent a circle C by a center
c of the circle and a radius r ∈ [0, π], the geodesic distance
between the center c and the circle C. This representation
is not unique [5]. For example, let c′ ∈ S2 be the antipodal
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point of c that is diametrically opposite to c on S2, then (c, r)
and (c′, π−r) represent the same circle C. Nevertheless, it is
not crucial to the optimization problem because we simply
find a representation of the least square circle. By using a
spherical coordinate system, it is able to parameterize c as
(θ, ρ), where θ denotes the azimuthal angle and ρ is the polar
angle. By symmetry of the circle, dGeo

(
x,projC(x)

)
can be

easily calculated by

dGeo
(
x,projC(x)

)
= dGeo(x, c)− r.

Thus, we have

δ(D,C) =
∑
x∈D

(
dGeo(x, c)− r

)2
. (2)

With letting c = (θc, ρc) and x = (θx, ρx) in the spherical
coordinate system, the geodesic distance dGeo(x, c) is given
by the spherical law of cosines with three points c, x, and the
polar point (see Lemma 3 of Appendix C below for details)

dGeo(x, c) = arccos
(

cos ρc cos ρx + sin ρc sin ρx cos(θc − θx)
)
.

(3)
By putting (3) into (2), it follows that δ(D,C) is represented
as a three-parameter differentiable function δD(θc, ρc, r) in
domain [0, 2π]× [0, π]× [0, π] as follows,

δD(θc, ρc, r) =
∑
x∈D

(
arccos

(
cos ρc cos ρx + sin ρc

· sin ρx cos(θc − θx)
)
− r
)2
. (4)

Since [0, 2π] × [0, π] × [0, π] is compact, the function
δD(θc, ρc, r) holds a global minimum value. Thus, it can
apply the gradient descent method to find the solution. Here
is the algorithm to find a principal circle from the above
description.

Algorithm 1 Exact Principal Circle by gradient descent

Initialize (θc, ρc, r) as (θ, ρ, π/2)
while (∆δ(D,C) ≥ threshold) do

(θc, ρc, r)← (θc, ρc, r)− β∇δD(θc, ρc, r)
end while

As in many nonlinear least-square algorithms, such as
Gauss-Newton algorithm and Levenberg-Marquardt algo-
rithm (see Ch 4 of [14] for details), the above Algorithm 1
may converge to a local minimum or a saddle point instead
of the global minimum, since δD(θc, ρc, r) is non-convex.
Thus, initial values should be selected carefully. If the data
points in D are not too apart and localized, then it is rea-
sonable to choose (θx, ρx, π/2) for some x ∈ D as an initial.
The spherical coordinates of the intrinsic mean of D with
radius r = π/2, denoted by (θ, ρ, π/2), if necessary with
varying r ∈ [0, π], is also recommended as initial values.
In the case of a non-localized data set, one can implement
the algorithm with various initial settings as much as one
wants, compare the consequences of δ, and finally choose
the circle with the lowest δ as the principal circle. Note that,
in existing methods for fitting circles to data on S2, such
as [2] and [5], there are no assurances that their algorithms
finally achieve the circle minimizing (2). Although δ is not
convex globally, it is convex on a neighborhood of a global
minimum point. Hence, it is reasonably expected that if an

initial value is suitably close to an optimum point, then
Algorithm 1 converges to the optimum. A specification
about the neighborhood for which δ is convex, and rigorous
proof for convergence of Algorithm 1 on that neighborhood
remains a challenge. In the real data analysis and the sim-
ulated studies on Section 4, however, implementations of
Algorithm 1 with several initial values result in almost the
same principal circles and converge rapidly. Thus, there are
no practical difficulties in our experiments. In addition, β
is the step size of Algorithm 1, and it relies on data set D.
The algorithm may diverge when β is large (e.g., greater
than 0.01). In simulated examples and real data on Section
4, we use .001. Since too small β causes computational time
to be high, an appropriate β should be selected properly
throughout experiments from a relatively larger value of β
to the lower one.

B.3 Extension to Hyperspheres

In the case of high-dimensional spheres, to find a one-
dimensional circle that attempts to represent a given data
closely, we provide both extrinsic and intrinsic ways. The
former is easy to implement and more computationally fea-
sible because it uses an extrinsic approach and is not exactly
found. The latter directly extends the exact principal circle in
the previous section into higher-dimensional spheres using
the framework of principal nested spheres [6]; however, it
takes time to compute compared to the former approach.

B.3.1 Circle as an Initialization

In Section 4.2.2, we have used the following extrinsic
method as an initial estimate of the spherical principal
curves for waveform simulated data on S4. Specifically, we
consider Sd = {y = (y1, y2, ..., yd+1) ∈ Rd+1 |

∑d+1
i=1 y

2
i = 1}

for d ≥ 2, as an embedded surface in the ambient space
Rd+1. That is, {xi}ni=1 ⊂ Sd ↪→ Rd+1 are regarded as
elements in Rd+1, not taking into account a nonlinear depen-
dence of the data; though, ensuring lower computational
complexity. Note that any one-dimensional circle on Sd is
an intersection of a two-dimensional plane and Sd. Hence,
the strategy is to find the 2-plane P ⊂ Rd+1 that closely
represents the data {xi}ni=1 with respect to the standard
distance in Rd+1, rather than geodesic distance in Sd. That is,
the plane P is the two-dimensional vector subspace of Rd+1

spanned by first two principal components of the data, and
then P ∩Sd is a one-dimensional circle to find. Although the
extrinsic circle is capable of approximating the meaningful
data, there may be some instances that need more precise
initial estimate for the data.

B.3.2 Exact Principal Circle

For a better initial guess of the proposed principal curves,
we provide an exact principal circle on Sd = {y =

(y1, y2, ..., yd+1) ∈ Rd+1 |
∑d+1
i=1 y

2
i = 1} for d ≥ 2. The

arguments in the previous section can be applied to higher-
dimensional spheres Sd for d ≥ 2 if the geodesic distance
of Equation (2) can be precisely calculated. To this end, let
D = {xi}ni=1 be a dataset on Sd, and denote a (d − 1)-
dimensional subsphere on Sd as C. Using a spherical co-
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ordinates for Sd, x = (x1, x2, ..., xd, xd+1) ∈ Sd ⊂ Rd+1 can
be parametrized as

x1 = cos(ϕ1)

x2 = sin(ϕ1) cos(ϕ2),

x3 = sin(ϕ1) sin(ϕ2) cos(ϕ3)

...
xd = sin(ϕ1) · · · sin(ϕd−1) · cos(ϕd)

xd+1 = sin(ϕ1) · · · sin(ϕd−1) · sin(ϕd),

where ϕ1, ϕ2, · · · , ϕd−1, ϕd are angular coordinates with
ϕd ∈ [0, 2π) and the others ranging over [0, π). Note that
dGeo(x, c) = arccos(x · c), where · denotes the inner product
in Rd+1. Thus,

dGeo(x, c) = arccos
(

cos(ϕ1c) cos(ϕ1x) +
d−2∑
k=1

[ k∏
i=1

sin(ϕic) sin(ϕix)
]
· cos(ϕ(k+1)c) cos(ϕ(k+1)x)

+
[ d−1∏
i=1

sin(ϕdc) sin(ϕdx)
]
· cos(ϕdc − ϕdx)

)
, (5)

where {ϕic}di=1 and {ϕix}di=1 are the corresponding angular
coordinates of c and x, respectively. By putting (5) into
(2), it follows that δ(D,C) is represented as a (n + 1)-
parameter differentiable function δD(ϕ1c, ..., ϕdc, r) in do-
main [0, π]d−1 × [0, 2π]× [0, π] as follows,

δD(ϕ1c, ..., ϕdc, r) =
∑
x∈D

Å
arccos

(
cos(ϕ1c) cos(ϕ1x)

+
d−2∑
k=1

[ k∏
i=1

sin(ϕic) sin(ϕix)
]
· cos(ϕ(k+1)c) cos(ϕ(k+1)x)

+
[ d−1∏
i=1

sin(ϕic) sin(ϕix)
]
· cos(ϕdc − ϕdx)

)
− r
ã2
. (6)

Note that, in the case of d = 2, the above equation (6)
becomes (4). δD holds a global minimum value due to
the compactness of the domain [0, π]d−1 × [0, 2π] × [0, π].
Therefore, an exact principal circle on Sd can be obtained
by gradient descent, the same way in Algorithm 1, except
that the number of parameters is d + 1. Let (ϕ1, ϕ2, . . . , ϕd)
denote the spherical coordinates of the intrinsic mean of D.
Here is the algorithm to find a principal circle on Sd.

Algorithm 2 Exact Principal Nested Sphere on Hyper-
sphere Sd

Initialize (ϕ1c, ϕ2c, ..., ϕdc, r) as (ϕ1, ϕ2, ..., ϕd, π/2)
while (∆δ(D,C) ≥ threshold) do

(ϕ1c, ϕ2c, ..., ϕdc, r)← (ϕ1c, ϕ2c, ..., ϕdc, r)

−β∇δD(ϕ1c, ϕ2c, ..., ϕdc, r).
end while

It is possible that Algorithm 2 converges to a local min-
imum or a saddle point of δD, owing to its non-convexity.
Therefore, an initial value should be carefully chosen, for
instance, a data point in D and the intrinsic mean of D. The
discussions about initial values and step size β are the same
as those of Algorithm 1.

By applying the Algorithm 2 to a given data iteratively,
we can obtain a one-dimensional sphere, i.e., an exact princi-
pal circle on Sd that can be the initialization of the spherical
principal curves. For more details about the procedure,
see [6]. It is noteworthy that from the perspective of the
principal nested spheres, our method can be applied to find
nested spheres in an exact way.

Before closing this section, some useful non-convex op-
timization techniques, described in [15] and [16], have been
recently developed to deal with the non-convex objective
functions. The optimization techniques such as stochas-
tic gradient descent, alternating minimization, and their
variations in [15] can be applied to our problem. Specific
applications of these approaches and related theoretical
investigations remain as future work.

APPENDIX C
PROOF: STATIONARITY OF PRINCIPAL CURVES

Here we cover a smooth (infinitely differentiable) curve
that does not cross on a sphere

(
i.e., λ1 6= λ2 ∈ [0, 1) ⇒

f(λ1) 6= f(λ2)
)
, including curves with end points and closed

curves, which can be both parameterized over interval [0, 1]
by a constant speed, i.e. f ′(λ) = s > 0 for any λ ∈ [0, 1].
In the latter case, a boundary condition is needed; any
order partial derivatives of f at end points are the same,
i.e., f (k)(0) = f (k)(1) for all k ≥ 0. For a random vector
X on a sphere, we further assume that the curve f are
not short enough to cover the support of X well, i.e.,
λf (X) 6= 0, 1 for a.e. X . For example, any closed curve
satisfies the condition λf (X) 6= 0, 1 for a.e. X , meaning that
almost allX is orthogonally projected onto the curve f . Note
that f is smooth on [0, 1], i.e. f is smoothly extended on
[0, 1]; thus any order its derivatives are continuous on [0, 1].
Our main purpose is to prove the stationarity of extrinsic,
intrinsic principal curves f : [0, 1] → Sd for d ≥ 2 that
satisfy the equations (8) and (9) in Theorems 1 and 2. We
first consider the 2-sphere, and then extend d-spheres, d ≥ 2.

When moving from Euclidean space to spherical sur-
faces, topological properties such as measurability and
continuity are preserved, while the formula using spe-
cific distance should be modified. This modification could
be obtained by embedding a spherical surface Sd into a
(d+1)-dimensional Euclidean space. Specifically, we embed
a spherical surface as a unit sphere centered at the origin,
i.e. Sd ↪→ Rd+1, and investigate further derivations. When
d = 2, for a smooth curve f : [0, 1] → S2, suppose that f
is parameterized by a constant speed with respect to λ and
is expressed as three-dimensional coordinates (f(λ)1, f(λ)2,
f(λ)3). Then the following lemmas are held.

Lemma 1. A curve f satisfies f ′(λ) · f(λ) = 0 and f ′′(λ) ·
f ′(λ) = 0, ∀λ ∈ [0, 1], where · denotes inner product in R3.

Proof. It is directly obtained from f(λ) · f(λ) = 1 and f ′(λ) ·
f ′(λ) = constant.

Lemma 2. Suppose that f(λ) and x are expressed as three-
dimensional vectors. Then, it follows that dGeo(f(λ), x) =
arccos(f(λ) · x), where arccos(f(λ) · x) is the angle between
f(λ) and x. Then, df

dλ (λf (0, 0, 1))3 = 0. Thus, it follows that
df
dλ (λf (0, 0, 1)) = a

(
− f(λf (0, 0, 1))2, f(λf (0, 0, 1))1, 0

)
for
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some a ∈ R. Note that λf (x) denotes the projection index of
point x to the curve f .

Proof. For p = (0, 0, 1), it follows that dGeo(f(λ), p) =
arccos(f(λ)3). From the assumption that f(λ) is a smooth
curve and the fact that dGeo(f(λ), p) has the minimum at
λf (0, 0, 1), the remaining part of the lemma follows by
differentiation with respect to λ.

Lemma 3. (Spherical law of cosines) Let u, v, w be points on
a sphere, and a, b and c denote dGeo(w, u), dGeo(w, v) and
dGeo(u, v), respectively. If C is the angle between a and b, i.e.,
the angle of the corner opposite c, then, cos c = cos a cos b +
sin a sin b cosC. Further, with three-dimensional vectors u, v, w,
it follows that sin a sin b cosC = (w × u) · (w × v), where ×
denotes cross product in R3.

The following property can be obtained from Definition
2.

Proposition 1. Under the same conditions in Definition 2,
f(ε, λ) := (f + εg)(λ) is smooth on [−1, 1] × [0, 1]. Hence, for
each ε ∈ [−1, 1], f + εg : [0, 1] → Sd is a smooth curve on Sd

and lim
ε→0

(f + εg)(λ) = f(λ) for λ ∈ [0, 1].

Proof. For simplicity, we denote f + g as h. Let Ra,b(θ) be a
rotation matrix that rotates points on Sd by θ in the direction
along the geodesic from a to b with a, b ∈ Sd ⊂ Rd+1

satisfying a 6= −b ∈ Rd+1 and θ ranging over [0, π). Then,
it has a closed form; formally, as a column vector notation,
Ra,b(θ) = Id+1+sin(θ)B+(cos(θ)−1)(bbT+ccT ), where if a 6=
b, then c =

(
a− b(bT a)

)
/
∥∥a− b(bT a)

∥∥, otherwise c = 0, and
B = bcT−cbT . For more details, refer to the Section 8.1 in [6].
Hence, we obtain f(ε, λ) := (f + εg)(λ) = Rf(λ),h(λ)(θ)f(λ),
where θ = ε arccos

(
f(λ) ·h(λ)

)
. Thus, (f+εg)(λ)

(
= f(ε, λ)

)
is smooth on [−1, 1]× [0, 1] since all functions f , h, R, and θ
are smooth. Therefore, for a fixed ε ∈ [0, 1], the smoothness
of (f + εg)(λ) with respect to λ also follows. Moreover,
the last equality is directly followed by the definition of
f + εg.

In Euclidean space, we have g(λ) = ∂
∂εfε(λ), where

fε(λ) := f + εg. From this fact, the magnitude of per-
turbation ‖h− f‖ is defined as g(ε0, λ) := ∂

∂ε

∣∣
ε=ε0

fε(λ),
‖g(λ)‖ := dGeo

(
f(λ), g(λ)

)
=
∣∣g(ε0, λ)

∣∣, ‖g‖ := maxλ ‖g(λ)‖,
and finally ‖h− f‖ := ‖g‖ 6= π. The boundedness of ‖g‖
guarantees that ε-internal division of the geodesic from f
to h converges to f uniformly on λ ∈ [0, 1] as ε goes to 0.
Notice that from the compactness of the unit sphere, ‖h− f‖
is inherently equal or less than π; thus, the assumption of
‖h− f‖ 6= π implies that ‖h− f‖ < π.

Moreover, the norm of derivative of perturbation
‖(h− f)′‖ is defined as g′(ε, λ0) := ∂

∂λ

∣∣
λ=λ0

g(ε, λ),
‖g′(λ0)‖ := maxε ‖g′(ε, λ0)‖, ‖g′‖ := maxλ0 ‖g′(λ0)‖, and
finally ‖(h− f)′‖ := ‖g′‖.

Let x be a point on a sphere. By the continuity of
f and the compactness of the domain set, it follows
that infλ∈[0,1] dGeo

(
x, f(λ)

)
can be attained. Let dGeo(x, f)

denote the geodesic distance between x and f , i.e.,
dGeo(x, f) := minλ∈[0,1] dGeo

(
x, f(λ)

)
. By the continuity

of f again, {λ ∈ [0, 1] | dGeo
(
x, f(λ)

)
= dGeo(x, f)} is

closed and therefore compact. Thus, the projection indices
λf (x) = inf{λ | dGeo

(
x, f(λ)

)
= dGeo(x, f)} and λf+εg

are well defined. The latter holds due to the fact that
f + εg is a continuous curve by Proposition 1. When
card{λ | dGeo

(
x, f(λ)

)
= dGeo(x, f)} > 1, the point x

is called an ambiguity point of f . The set of ambiguity
points of the smooth curve has spherical measure 0; thus,
the ambiguity points are negligible when calculating the
expected value.

The next topological properties of the principal curves
established in Euclidean space of [3] are still valid in spher-
ical surfaces.

Proposition 2. (Measurability of index function) For a contin-
uous curve f on Sd, the index function λf : Sd → [0, 1] by
x 7→ λf (x) is measurable.

Proof. It follows that of Theorem 4.1 in [17]. It is enough to
show that, for any constant c ∈ [0, 1],

{
x ∈ Sd | λf (x) ≥ c

}
is

a measurable set on Sd. If c = 0, then the set is Sd; thus,
we may assume that c ∈ (0, 1]. By the definition of the
projection index λf (x) = inf{λ | dGeo

(
x, f(λ)

)
= dGeo(x, f)},

the condition λf (x) ≥ c is equivalent to the property
that for any λ1 ∈ [0, c), there exists λ2 ∈ [c, 1] such that
dGeo

(
x, f(λ2)

)
< dGeo

(
x, f(λ1)

)
. Technically, we aim to

prove that

λf (x) ≥ c (1)⇐=⇒ for any λ1 ∈ [0, c), there exists λ2 ∈ [c, 1] ∩Q

such that dGeo
(
x, f(λ2)

)
< dGeo

(
x, f(λ2)

) (2)⇐=⇒ for any λ1 ∈
[0, c]∩Q, there exists λ2 ∈ [c, 1]∩Q such that dGeo

(
x, f(λ2)

)
<

dGeo
(
x, f(λ1)

)
. Here Q is the set of rational numbers. If (1)

and (2) are verified, we obtain that

{λf (x) ≥ c}
=

⋂
λ1∈[0,c)∩Q

⋃
λ2∈[c,1]∩Q

{
dGeo

(
x, f(λ2)

)
< dGeo

(
x, f(λ1)

)}
.

Each set is measurable on Sd because for any λ1 and λ2, the
function x 7→ dGeo

(
x, f(λ1)

)
− dGeo

(
x, f(λ2)

)
is continuous.

Accordingly, {λf (x) ≥ c} is measurable due to the fact that
countable unions and intersections of measurable sets are
also measurable. It completes the proof.

Proof of (1). For any λ1 ∈ [0, c), there is λ2 ∈ [c, 1]
such that dGeo

(
x, f(λ2)

)
< dGeo

(
x, f(λ1)

)
. Since Q is dense

in R and f is continuous, there is λ′2 ∈ [c, 1] ∩ Q such that
dGeo

(
x, f(λ′2)

)
< dGeo

(
x, f(λ1)

)
, which completes (1).

Proof of (2). We want to show that

D :=
⋂

λ1∈[0,c)

⋃
λ2∈[c,1]∩Q

{
dGeo

(
x, f(λ2)

)
< dGeo

(
x, f(λ1)

)}
=

⋂
λ1∈[0,c)∩Q

⋃
λ2∈[c,1]∩Q

{
dGeo

(
x, f(λ2)

)
< dGeo

(
x, f(λ1)

)}
=: E.

The inclusion D ⊆ E is clear. If x ∈ E, for any λ1 ∈
[0, a) ∩ Q, there is λ2 ∈ [a, 1] ∩ Q such that dGeo(x, f(λ2)) <
dGeo(x, f(λ1)). For such λ1 and λ2, owing to the continuity
of f , there is λ̃1 ∈ (λ1, a) ∩ Q such that ∀λ ∈ [λ1, λ̃1) ∩ Q ⇒
dGeo(x, f(λ2)) < dGeo(x, f(λ)). That is,

x ∈
⋂

λ∈[λ1,λ̃1)∩Q

⋃
λ3∈[c,1]∩Q

{
dGeo

(
x, f(λ3)

)
< dGeo

(
x, f(λ)

)}
=: Fλ1,λ̃1

.

Note that λ̃1 is automatically chosen for each λ1 ∈ [0, c) ∩ Q.
Since the above derivation is satisfied for any λ1 ∈ [0, c] ∩ Q, it
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follows that

x ∈
⋂

λ1∈[0,c)∩Q, λ1<λ̃1

Fλ1,λ̃1

=
⋂

λ∈[0,c)

⋃
λ3∈[c,1]∩Q

{
dGeo

(
x, f(λ3)

)
< dGeo

(
x, f(λ)

)}
= D.

Hence, we obtain E ⊆ D; thus, D = E.

According to Proposition 2, λf (X) is a random variable
with respect to X as long as X is a random vector on Sd for
d ≥ 2. Thus, a conditional expectation on λf (X) is feasible.

Proposition 3. (Continuity of projection index under perturba-
tion) If x is not an ambiguity point for continuous curve f , then
lim
ε→0

λf+εg(x) = λf (x).

Proof. The proof follows the line of the proof of Lemma 4.1
in [3]. It is enough to show that, for any small η > 0 there
exists δ > 0 such that |ε| < δ implies |λfε(x) − λf (x)| < η.
Define a set C := [0, 1] ∩ (λf (x) − η, λf (x) + η)c and
dC := infλ∈C dGeo

(
x, f(λ)

)
> dGeo

(
x, f(λf (x))

)
where dC

is achieved by some λ ∈ C from the compactness of C, and
the last inequality holds since x is not an ambiguity point of
f . Choose δ = 1

3

[
dC−dGeo

(
x, f(λf (x))

)]
> 0. Then if |ε| < δ,

it follows that

inf
λ∈C

dGeo
(
x, fε(λ)

)
− dGeo

(
x, fε(λf (x))

)
≥ inf
λ∈C

dGeo
(
x, f(λ)

)
− dGeo

(
f(λ), fε(λ)

)
−dGeo

(
x, f(λf (x))

)
− dGeo

(
f(λf (x)), fε(λf (x))

)
≥ dC − dGeo

(
x, f(λf (x))

)
− δ − δ

= 3δ − 2δ > 0

By the definition of λfε(x), we obtain λfε(x) /∈ C; thus,
|λf (x)− λfε(x)| < η. It completes the proof.

In the proof of Proposition 3, it is possible to apply the
triangle inequality on a sphere because the sphere is a metric
space equipped with its geodesic distance. The following
proposition is an important tool for verifying Theorem 2.

Proposition 4. (Uniform continuity of projection index under
perturbation) lim

ε→0
λf+εg(x) = λf (x) uniformly on the set of non-

ambiguity points of f . That is, for every η > 0, there exists δ >
0 such that for any non-ambiguity points x, if |ε| < δ, then
|λfε(x)− λf (x)| < η.

For guaranteeing uniform continuity of projection index,
it is required that |f ′′| is bounded. It is directly followed by
smoothness of f and compactness of [0, 1]. A proof is similar
to that of Proposition 3; thus, we omit the proof, which can
be provided on request.

Proposition 5. Spherical measure of the set of ambiguity points
of smooth curve f is 0.

Detailed steps for a proof of Proposition 5 are similar
with those of [3]; thus, we omit the proof, which can be
provided on request.

Meanwhile, to prove Theorem 2, it is essential to verify
that λfε is differentiable for ε and its derivative is uniformly
bounded. Thus, it is necessary to define a subset of S2 as
B(ζ) := {x ∈ S2 | |f ′′(λf (x)) · x| > ζ} for ζ ≥ 0. Obviously,

as an inclusion of sets, {B(ζ)}ζ≥0 is decreasing as ζ0 goes to
0. Moreover, the following lemma implies that, as ζ goes to
0, B(ζ) covers S2 almost everywhere.

Lemma 4. The image of smooth function from [0, 1] to S2 has
measure 0. Moreover,

S2 \B(0) = {x ∈ S2 | |f ′′(λf (x)) · x| = 0}

is an union of images of two smooth functions from [0, 1] to S2,
which implies that S2\B(0) are measure 0. Therefore, the measure
of S2 \B(ζ) goes to 0 as ζ → 0.

Proof. Suppose that I : [0, 1] → S2 is smooth. The domain
and range of I are the second countable (with usual topol-
ogy) differentiable manifolds whose dimensions are 1 and
2, respectively. Since f is twice continuously differentiable
function and the differential dI has rank 1 which is less
than intrinsic dimension of S2, by a generalization of Sard’s
Theorem, the image I([0, 1]) = {I(x) ∈ S2 | x ∈ [0, 1]} has
measure zero. Next, each point x ∈ S2 \ B(0) satisfying
λf (x) 6= 0, 1 is characterized by two equations f ′(λ) · x = 0
and f ′′(λ) · x = 0 for some λ ∈ [0, 1]. Therefore, we define
functions I1, I2 as follows: For all λ ∈ [0, 1],

I1(λ) = f ′(λ)× f ′′(λ)/ ‖f ′(λ)× f ′′(λ)‖ ,
I2(λ) = −f ′(λ)× f ′′(λ)/ ‖f ′(λ)× f ′′(λ)‖ .

It is well known that the curvature of a smooth curve lying
on the unit sphere is more than 1. It implies that κ = |f ′′|

s2 ≥
1, where κ is the curvature of f and s := |f ′(λ)| > 0 for
all λ ∈ [0, 1], and hence f ′′ 6= 0. We have already known
that f ′ · f ′′ = 0 by Lemma 1. Hence, it is obtained that
f ′ × f ′′ 6= 0. It implies that I1 and I2 are well defined and
smooth. Therefore, we have S2 \B(0) = I1([0, 1])

⋃
I2([0, 1]),

which completes the proof.

Lemma 4 means that the constraints of random vector
X in Theorems 1 and 2 are almost negligible by setting ζ
infinitesimally small. Denote the set of ambiguity points of
smooth curve f on a sphere as A, which is a measure zero
set by Proposition 5.

Lemma 5. Let A be the set of ambiguity points of smooth curve f
on a sphere. Suppose that for any x ∈ S2, λf (x) ∈ (0, 1) and x ∈
Ac∩B(ζ) for some small ζ > 0. Then λ(ε) := λfε(x) is a smooth
function for ε on an open interval containing 0. Moreover, ∂λ(ε)∂ε
is uniformly bounded on Ac ∩ B(ζ). That is, there are constants
C > 0 and δ > 0 such that if |ε0| < δ and x ∈ Ac ∩ B(ζ), then∣∣ ∂λfε (x)

∂ε

∣∣
ε=ε0

∣∣ < C.

Proof. By the assumptions that x is a non-ambiguity point
of f and λf (x) 6= 0, 1 and Proposition 4, we obtain
λf+εg(x) 6= 0, 1 for sufficiently small values of |ε|. Hence,
λ(ε) is characterized by orthogonality between f ′ε

(
λ(ε)

)
and

the geodesic through x and fε
(
λ(ε)

)
on a small ε near 0; that

is, f ′ε(λ) ·
(
x − fε(λ)

)
= f ′ε(λ) · x = 0 by the same argument

in Lemma 1. Then, we define a map F : [−1, 1] × [0, 1] → R
as F (ε, λ) = f ′ε(λ) · x. F is a smooth function by Proposition
1. It follows by the definition of B(ζ) that

∂

∂λ
F (ε, λ)

∣∣
(0,λf )

= f ′′(λf ) · x 6= 0.

By implicit function theorem, for each x ∈ Ac ∩ B(ζ),
λ(ε) = λfε(x) is a smooth function for ε and F

(
ε, λ(ε)

)
= 0
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in an open interval containing zero. Next, in order to
prove uniform boundedness of ∂λ(ε)

∂ε , we should verify that
f ′′ε
(
λfε(x)

)
uniformly converge to f ′′

(
λf (x)

)
on Ac∩B(ζ) as

ε goes to 0. First of all, for each λ, we have

fε0(λ) = f(λ) +

∫ ε0

0

g(ε0, λ) dε

⇒ f ′′ε0(λ) = f ′′(λ) +

∫ ε0

0

g′′(ε, λ) dε

⇒
∥∥f ′′ε0(λ)− f ′′(λ)

∥∥ ≤ ∫ ε0

0

‖g′′(ε, λ)‖ dε ≤ ε0M,

(7)

for some M > 0. Note that the above derivatives are differ-
entiation by λ. Also, the second equation holds since g(ε, ·) is
a twice continuously differentiable function for all ε; thus, it
is able to change the order of derivative and the integration.
The last inequality holds because g′′(ε, λ)

(
= ∂2g(ε,λ)

∂λ2

)
is

continuous on [−1, 1]× [0, 1]. Hence, it follows that∥∥f ′′ε (λfε(x)
)
− f ′′

(
λf (x)

)∥∥ ≤ ∥∥f ′′ε (λfε(x)
)
− f ′′

(
λfε(x)

)∥∥
+
∥∥f ′′(λfε(x)

)
− f ′′

(
λf (x)

)∥∥
→ 0, (8)

as ε → 0 uniformly on x ∈ Ac ∩ B(ζ), because the first
term uniformly converges to 0 by (7) and the last one
also converges to 0 uniformly by Proposition 4 and the
boundedness of f ′′′. We have that |x · f ′′

(
λf (x)

)
| > ζ owing

to x ∈ B(ζ), and from (8), there exists a constant δ > 0 such
that |ε| < δ ⇒ |x · f ′′ε

(
λfε(x)

)
| ≥ ζ

2 . Since fε(λ) = f(ε, λ) has
continuous second partial derivatives, it is able to change
the order of partial derivatives by Schwarz’s theorem, as

∂

∂ε

∣∣∣
ε=ε0

f ′ε
(
λ(ε0)

)
=

∂

∂ε

∣∣∣
ε=ε0

∂

∂λ

∣∣∣
λ=λ(ε0)

fε(λ)

=
∂

∂λ

∣∣∣
λ=λ(ε0)

∂

∂ε

∣∣∣
ε=ε0

fε(λ)

= g′
(
ε0, λ(ε0)

)
,

for all |ε0| < δ. Therefore, if |ε0| < δ by applying implicit
function theorem to F again, then we obtain that λ(ε) is
differentiable at ε = ε0 and

|λ′(ε0)| =
∣∣∣−∂F (ε, λ)/∂ε

∂F (ε, λ)/∂λ

∣∣∣(
ε0,λ(ε0)

)∣∣∣ =

∣∣∣x · ∂∂ε ∣∣ε=ε0f ′ε(λ(ε0)
)∣∣∣∣∣∣x · f ′′ε0(λ(ε0)

)∣∣∣
≤ ‖g

′‖
ζ/2

≤ 2

ζ
,

which completes the proof.

We further consider principal curves on hypersphere Sd

for d ≥ 2. For a smooth curve f : [0, 1] → Sd, suppose
that f is parameterized by a constant speed with respect
to λ. Lemma 1 and all of the Propositions are still valid on
Sd. Moreover, Lemmas 4 and 5 can be extended onto Sd as
follows.

Lemma 6. Define C(ζ) =
{
x ∈ Sd | |f ′′(λf (x)) · x| > ζ

}
for

d ≥ 2. Then,

Sd \ C(0) = {x ∈ Sd | |f ′′(λf (x)) · x| = 0}

has spherical (d-dimensional Hausdorff) measure zero. Hence, the

spherical measure of Sd \ C(ζ) goes to 0 as ζ → 0.

Lemma 7. Let A be a set of ambiguity points of smooth curve f
on Sd for d ≥ 2. Suppose that x ∈ Ac ∩ C(ζ) for a small ζ > 0,
and λf (x) ∈ (0, 1). Then λ(ε) := λfε(x) is a smooth function for
ε on an open interval containing zero.

Proofs of Lemmas 6 and 7 are similar to those of Lemmas
4 and 5, respectively. Thus, we omit the proofs.

Proof of Theorem 1

Proof. First of all, we prove the theorem on S2. If f = h, then
nothing to prove. Thus, we assume that the curves f and f+
g(= h) are not identical and further both are parameterized
by λ ∈ [0, 1]. To prove the result, we need to show that the
conditional expectation is zero after exchanging the order of
the derivative and expectation.

First, for order exchange, it is necessary to show that the
following random variable

Zε(X) =
cos
(
dGeo(X, f + εg)

)
− cos

(
dGeo(X, f)

)
ε

=
cos
(
dGeo

(
X, (f + εg)(λf+εg(X))

))
ε

−
cos
(
dGeo

(
X, f(λf (X))

))
ε

(9)

is uniformly bounded for any sufficiently small |ε| > 0.
Then we apply bounded convergence theorem. Since the
projection index of X represents the closest point in the
curve, it follows that

Zε(X) ≤
cos
(
dGeo

(
X, (f + εg)(λf+εg(X))

))
ε

−
cos
(
dGeo

(
X, f(λf+εg(X))

))
ε

. (10)

For simplicity, let fg(λε) := (f + g)(λf+εg(X)), fε(λε) :=
(f + εg)(λf+εg(X)) and f(λε) := f(λf+εg(X)). By applying
Lemma 3 to cos

(
dGeo(X, fε(λε))

)
, the inequality of (10)

becomes

Zε(X) ≤
cos
(
dGeo

(
X, fε(λε)

))
− cos

(
dGeo

(
X, f(λε)

))
ε

=
cos(dGeo(X, f(λε)))(cos(dGeo(fε(λε), f(λε)))− 1)

ε

+
(f(λε)× fε(λε)) · (f(λε)×X)

ε
.

=
cos(dGeo(X, f(λε)))(cos(εdGeo(fg(λε), f(λε)))− 1)

ε

+
Aε(f(λε)× fg(λε)) · (f(λε)×X)

ε
, (11)

where

Aε = |f(λε)× fε(λε)|/|f(λε)× fg(λε)|
= sin(εdGeo(f(λε), fg(λε)))/|f(λε)× fg(λε)|.

The last equality is done by Definition 1. To get the upper
bound of Zε(X), we further use the following fact, | sin εCε | ≤
|C| and | 1−cos εCε | ≤ |ε|C2

2 for C ∈ R and ε ∈ R. Then, we
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have

Zε(X) ≤
∣∣ cos

(
dGeo

(
X, f(λε)

))∣∣ |ε|B2

2

+
B

|f(λε)× fg(λε)|
∣∣(f(λε)× fg(λε)) · (f(λε)×X)

∣∣,
where B = dGeo

(
f(λε), fg(λε)

)
≤ ‖g‖ < π. Note that any

smallest geodesic distance on a unit sphere is smaller than
π. In addition, we can assume that ε is less than 1/π because
we are only interested in ε near 0. Thus, we obtain the upper
bound of Zε(X) in (11)

Zε(X) ≤ π

2
+ π =

3π

2
.

A lower bound of Zε(X) can be similarly obtained. Let
fg(λ) := (f + g)(λf (X)), fε(λ) := (f + εg)(λf (X)) and
f(λ) := f(λf (X)). By following the same path, we have

Zε(X) ≥
cos
(
dGeo

(
X, (f + εg)(λf (X))

))
ε

−
cos
(
dGeo

(
X, f(λf (X))

))
ε

=
cos
(
dGeo

(
X, f(λ)

))(
cos
(
dGeo

(
fε(λ), f(λ)

))
− 1
)

ε

+
(f(λ)× fε(λ)) · (f(λ)×X)

ε

=
cos
(
dGeo

(
X, f(λ)

))(
cos
(
εdGeo

(
fg(λ), f(λ)

))
− 1
)

ε

+
Bε(f(λ)× fg(λ)) · (f(λ)×X)

ε
, (12)

where

Bε = |f(λ)× fε(λ)|/|f(λ)× fg(λ)|
= sin(εdGeo(f(λ), fg(λ)))/|f(λ)× fg(λ)|.

By the same way, it can be shown that Zε(X) ≥ − 3π
2 . Hence,

we show that
|Zε(X)| ≤ 3π

2
,

which is bounded for any 0 6= |ε| ≤ 1/π. Then, by the
bounded convergence theorem, it follows that

∂EX cos(dGeo
(
X, f + εg)

)
∂ε

∣∣∣
ε=0

= EX
∂ cos(dGeo

(
X, f + εg)

)
∂ε

∣∣∣
ε=0

.

Thus, the proof is completed provided that the following
equation holds

E
[∂ cos

(
dGeo(X, f + εg)

)
∂ε

∣∣∣
ε=0

∣∣∣ λf (X) = λ
]

= 0, for a.e. λ.

By the definition of derivative,

∂ cos
(
dGeo(X, f + εg)

)
∂ε

∣∣∣
ε=0

= lim
ε→0

Zε(X),

and as shown, Zε(X) is bounded. Since f and f + g are
continuous, by Proposition 3, if X is not an ambiguity point
of f and f + g, then

lim
ε→0

fg(λε) = fg(λ), lim
ε→0

f(λε) = f(λ).

Next, to show the limit of Zε, we use the fact that

limε→0
sin εC
ε = C and limε→0

1−cos εC
ε = 0 for C ∈ R and

ε ∈ R. When fg(λ) 6= f(λ), it follows that

lim
ε→0

RHS of (11)

= dGeo
(
f(λ), fg(λ)

) f(λ)× fg(λ)

|f(λ)× fg(λ)|
· (f(λ)×X)

= µ(λ) · (f(λ)×X),

where µ(λ) = dGeo(f(λ), fg(λ))(f(λ)× fg(λ))/|f(λ)× fg(λ)|
if f(λ) 6= (f + g)(λ) and µ(λ) = 0 otherwise. Similarly, we
obtain that

lim
ε→0

RHS of (12) = µ(λ) · (f(λ)×X).

In summary, if X is not an ambiguity point of f and f + g,
and f(λf (X)) 6= (f + g)(λf (X)), then we have

∂ cos
(
dGeo(X, f + εg)

)
∂ε

∣∣∣
ε=0

= µ(λf (X)) ·
(
f(λf (X))×X

)
.

(13)
In the case of f(λf (X)) = (f + g)(λf (X)), the equation
(13) also hold because its left and right hand side are 0.
From Proposition 4, the limit of (13) is established for a.e.
X . Note that, since X is a random vector and λf (X) is
measurable with respect toX according to the Proposition 2,
λf (X) is also a random variable depending on X . It implies
that conditional expectation on λf (X) is feasible. Hence, the
following equality holds

EX
[∂ cos

(
dGeo(X, f + εg)

)
∂ε

∣∣∣
ε=0

]
= EX

[
µ(λf (X)) ·

(
f(λf (X))×X

)]
. (14)

Finally, if f is an extrinsic principal curve, then

E
[
X|λf (X) = λ

]
= cf(λ)

for ∃c ∈ R. Hence, it follows that

E
[
µ(λf (X)) ·

(
f(λf (X))×X

)∣∣λf (X) = λ
]

= E
[
µ(λ) · (f(λ)×X)|λf (X) = λ

]
= µ(λ) · (f(λ)× cf(λ)) = 0.

Hence, we have

LHS of (14) = EX
[
µ(λ) · (f(λ)×X)

]
= Eλ

[
E
[
µ(λ) · (f(λ)×X)|λf (X) = λ

]]
= 0.

To prove the converse, we assume that

Eλ
[
E
(
µ(λ) · (f(λ)×X)|λf (X) = λ

)]
= Eλ

[
µ(λ) · E

[
f(λ)×X|λf (X) = λ

]]
= 0,

for all smooth f + g satisfying ‖g‖ 6= π and ‖g′‖ ≤ 1. Since
f + g is only concerned with µ(λ), it follows that

E
[
f(λ)×X|λf (X) = λ

]
= f(λ)× E

[
X|λf (X) = λ

]
= 0, for a.e. λ.

Therefore, we have

E
[
X|λf (X) = λ

]
= cf(λ)

for ∃c ≥ 0, which completes the proof.

Next, we consider the hypersphere case Sd for d ≥ 3.
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For given smooth curves f and h(= f + g) parametrized by
λ ∈ [0, 1], if f = h, the result is obvious. Thus, we assume
that f and f + g(= h) are not identical. Suppose that X ∈
Ac ∩ B(ζ) for a small ζ > 0 and λf (X) ∈ (0, 1) for a.e. X ,
where A denotes the set of ambiguity points of f . As the
proof of the case of S2, we use the bounded convergence
theorem to change the order of derivative and expectation.
Since dGeo(x, y) = arccos(x · y), ∀x, y ∈ Sd ⊂ Rd+1, we have

Zε(X) :=
cos
(
dGeo(X, f + εg)

)
− cos

(
dGeo(X, f)

)
ε

=
cos
(
dGeo

(
X, (f + εg)(λf+εg(X))

))
ε

−
cos
(
dGeo

(
X, f(λf (X))

))
ε

≤
cos
(
dGeo

(
X, (f + εg)(λf+εg(X))

)
ε

−
cos
(
dGeo

(
X, f(λf+εg(X))

)
ε

=
X · (f + εg)(λf+εg(X))−X · f(λf+εg(X))

ε

= X · (f + εg)(λf+εg(X))− f(λf+εg(X))

ε
, (15)

where · denotes the standard inner product in Rd+1. Hence,
we obtain the upper bound of Zε(X),

Zε(X) ≤ ‖X‖ ‖(f + εg)(λf+εg(X))− f(λf+εg(X))‖
ε

≤
dGeo

(
(f + εg)(λf+εg(X)), f(λf+εg(X))

)
ε

≤ ‖g(λf+εg(X))‖ ≤ ‖g‖
≤ π,

where ‖·‖ denotes the standard norm in Rd+1. Similarly, it
follows that

Zε(X) ≥
cos
(
dGeo

(
X, (f + εg)(λf (X))

))
ε

−
cos
(
dGeo

(
X, f(λf (X))

))
ε

=
X · (f + εg)(λf (X))−X · f(λf (X))

ε

= X · (f + εg)(λf (X))− f(λf (X))

ε

≥ −‖X‖ ‖(f + εg)(λf (X))− f(λf (X))‖
ε

≥ −
dGeo

(
(f + εg)(λf (X)), f(λf (X))

)
ε

≥ −‖g(λf (X))‖ ≥ −‖g‖
≥ −π.

It means that Zε(X) is uniformly bounded for 0 6= |ε| ≤ 1.
Next, to find the limit of Zε(X), we have

Zε(X) =
cos
(
dGeo

(
X, (f + εg)(λf+εg(X))

))
ε

−
cos
(
dGeo

(
X, f(λf (X))

))
ε

=
X · (f + εg)(λf+εg(X))−X · f(λf (X))

ε

=X · (f + εg)(λf+εg(X))− f(λf (X))

ε
.

According to the Proposition 3,

lim
ε→0

Zε(X) = X · lim
ε→0

(f + εg)(λf+εg(X))− f(λf (X))

ε
=: X · φ(λf (X)).

For each X ∈ Ac ∩ B(ζ), define a curve C : I → Sd by
ε 7→ C(ε) = (f + εg)(λf+εg(X)) ∈ Sd ⊂ Rd+1, where I is
an open interval containing zero and C(0) = f(λf (X)). For
convenience, let (f + εg)(λ) = f(ε, λ), λf (X) = λ(0) and
λf+εg(X) = λ(ε). According to Lemma 7, λ(ε) is a smooth
function on an interval I containing zero. As f(·, ·) is smooth
on [−1, 1]× [0, 1] by the Proposition 1 and λ(ε) is smooth on
ε ∈ I , C(ε) = f

(
ε, λ(ε)

)
is also smooth on ε ∈ I . Thus, φ(λ) is

well defined. Hence, by the definition of tangent space via
tangent curves, it follows that

φ(λ) = lim
ε→0

C(ε)− C(0)

ε
= C ′(0) ∈ Tf(λ)Sd,

where Tf(λ)Sd is the tangent space of Sd at f(λ). Note that,
by the symmetry of spheres, any tangent vector in Tf(λ)S

d

is orthogonal to the vector f(λ), i.e., φ(λ) · f(λ) = 0. Finally,
if f is an extrinsic principal curve, then

E
[
X|λf (X) = λ

]
= cf(λ)

for ∃c ∈ R. Hence, it follows, by the bounded convergence
theorem, that

∂EX
[

cos
(
dGeo(X, f + εg)

)]
∂ε

∣∣∣
ε=0

= lim
ε→0

EX
[

cos
(
dGeo(X, f + εg)

)]
− EX

[
cos
(
dGeo(X, f)

)]
ε

= EX
[

lim
ε→0

cos(dGeo(X, f + εg))− cos(dGeo(X, f))

ε

]
= Eλ

[
E
[

lim
ε→0

Zε(X)
∣∣ λf (X) = λ

]]
= Eλ

[
E
[
φ(λ) ·X

∣∣ λf (X) = λ
]]

= Eλ
[
φ(λ) · E

[
X
∣∣ λf (X) = λ

]]
= Eλ

[
φ(λ) · cf(λ)

]
= 0.

To prove the converse, we assume that f satisfies

0 =
∂EX

[
cos
(
dGeo(X, f + εg)

)]
∂ε

∣∣∣
ε=0

= lim
ε→0

EX
[

cos
(
dGeo(X, f + εg)

)]
− EX

[
cos
(
dGeo(X, f)

)]
ε

=EX
[

lim
ε→0

cos
(
dGeo(X, f + εg)

)
− cos

(
dGeo(X, f)

)
ε

]
=Eλ

[
E
[

lim
ε→0

Zε(X)
∣∣ λf (X) = λ

]]
=Eλ

[
E
[
φ(λ) ·X

∣∣ λf (X) = λ
]]

=Eλ
[
φ(λ) · E

[
X
∣∣ λf (X) = λ

]]
,

for any smooth curve h : [0, 1] → Sd. Since h is arbitrary,
φ can become any vector in Tf(λ)S

d. In addition, h is only
concerned with φ. We thus obtain, for a.e. λ, the following
condition:

φ · E
[
X | λf (X) = λ

]
= 0 for any φ ∈ Tf(λ)Sd.

It means that E
[
X|λf (X) = λ

]
is orthogonal to Tf(λ)S

d.
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Therefore, it follows that

E
[
X | λf (X) = λ

]
= cf(λ)

for ∃c ≥ 0, which completes the proof.

Proof of Theorem 2

Proof. In the case of f = h, the result is obvious. We thus
assume that f and f + g(= h) are not identical. Further,
suppose that X ∈ Ac ∩ B(ζ) for a small ζ > 0 and
λf (X) ∈ (0, 1) for a.e. X . As the proof of Theorem 1, we
use the bounded convergence theorem to change the order
of derivative and expectation. For this purpose, we define

Zε(X) =
d2Geo(X, f + εg)− d2Geo(X, f)

ε

=
d2Geo(X, fε

(
λfε)

)
− d2Geo

(
X, f(λf )

)
ε

,

where fε := f + εg for |ε| ≤ 1. Let θ(λ,X) be the angle
between segments of geodesics from f(λ) to X and from
f(λ) to (f + g)(λ). Then, from Lemma 3, it follows that

F (ε) := cos
(
dGeo

(
X, fε(λfε)

))
= cos

(
dGeo

(
X, f(λfε)

))
· cos

(
ε ‖g(λfε)‖

)
+ sin

(
dGeo

(
X, f(λfε)

))
· sin

(
ε ‖g(λfε)‖

)
· cos

(
θ(λfε , X)

)
,

where ‖g(λ)‖ = dGeo
(
f(λ), (f + g)(λ)

)
< π.

Firstly, we verify that Zε(X) is uniformly bounded for a
small |ε| > 0. By Lemma 5, there are constants C > 0 and
η > 0 such that if 0 < |ε0| < η, then λ(ε) is differentiable
at ε = ε0 and

∣∣∂λ(ε)
∂ε

∣∣
ε=ε0

∣∣ < C, where λ(ε) = λfε(X). For
convenience, let λfε(X) = λε and λf (X) = λ0. If 0 < |ε0| <
η, then by the triangle inequality on sphere and mean value
theorem, it follows that

|Zε0(X)| =
∣∣∣∣∣dGeo

(
X, fε0(λfε0 )

)
− dGeo

(
X, f(λf )

)
ε0

∣∣∣∣∣
·
(
dGeo

(
X, fε0(λfε0 )

)
+ dGeo

(
X, f(λf )

))
≤ 2π ·

dGeo
(
f(λ0), fε0(λε0)

)
ε0

≤ 2π ·
ï
dGeo

(
f(λ0), f(λε0)

)
ε

+
dGeo

(
f(λε0), fε0(λε0)

)
ε0

ò
< 2π ·

(
s · |λ0 − λε0 |

ε0
+ ‖g(λε0)‖

)
≤ 2π · (s · C + π),

where s = |f ′(λ)| for all λ. Therefore, Zε(X) is uniformly
bounded on X ∈ Ac ∩B(ζ) for 0 < |ε| < η.

Secondly, we aim to find the limit of Zε(X). For this
purpose, we define a map u : (−1, 1] → (1,∞) by u(x) =
arccos(x) · 1√

1−x2
if x ∈ (−1, 1), and u(1) = 1. By simple cal-

culations, u is a monotone decreasing continuous function
on (−1, 1]. Note that F (ε) is differentiable for |ε| < η. By the

mean value theorem to find the limit of Zε(X), we have

Zε0(X) =
d2Geo

(
X, fε0

(
λfε0 )

)
− d2Geo

(
X, f(λf )

)
ε0

=
arccos2

(
F (ε0)

)
− arccos2

(
F (0)

)
ε0

= −2 arccos
(
F (ε1)

)
· 1√

1− F 2(ε1)
· dF (ε)

dε

∣∣∣
ε=ε1

(16)

for 0 < |ε1| < |ε0| < η. When F (ε1) = 1, the last equal-
ity is considered as a limit that is well-defined, because
limx→1 u(x) = 1 and u(x) is smoothly extended on an open
interval containing 1 such that u(x) is differentiable at x = 1.
By applying chain rule to the derivative of F , we obtain

lim
ε0→0

∂F (ε)

∂ε

∣∣∣
ε=ε0

= lim
ε0→0

[
sin
(
dGeo

(
X, f(λfε0 )

))
· cos

(
θ(λfε0 , X)

)
·
(
‖g(λfε0 )‖+ ε0 ·

∂ ‖g(λfε)‖
∂ε

∣∣∣
ε=ε0

)]
− lim
ε0→0

[
sin
(
dGeo

(
X, f(λfε0 )

))
·
∂dGeo

(
X, f(λfε)

)
∂ε

∣∣∣
ε=ε0

]
.

In addition,

∂ ‖g(λfε)‖
∂ε

∣∣∣
ε=ε0

=
∂ ‖g(λ)‖
∂λ

∣∣∣
λ=λfε0

∂λ(ε)

∂ε

∣∣∣
ε=ε0

,

which exists and does not diverge as ε0 goes to 0, since
‖g(λ)‖ = dGeo

(
f(λ), (f + g)(λ)

)
is continuously differen-

tiable for λ and ∂λ(ε)
∂ε

∣∣
ε=0

is bounded by Lemma 5. Moreover,

lim
ε0→0

∂dGeo
(
X, f(λfε)

)
∂ε

∣∣∣
ε=ε0

= lim
ε0→0

∂dGeo
(
X, f(λ)

)
∂λ

∣∣∣
λ=λfε0

· ∂λ(ε)

∂ε

∣∣∣
ε=ε0

=
∂dGeo

(
X, f(λ)

)
∂λ

∣∣∣
λ=λf

∂λ(ε)

∂ε

∣∣∣
ε=0

= 0,

where λ(ε) = λfε . The last equality is done by the definition
of λf . Therefore, we have

lim
ε→0

∂F (ε)

∂ε
= ‖g(λf )‖ · cos

(
θ(λf , X)

)
· sin

(
dGeo

(
X, f(λf )

))
. (17)

Thirdly, it follows from (16) and (17) that

lim
ε0→0

Zε0(X) = lim
ε1→0

[
− 2 arccosF (ε1) · 1√

1− F 2(ε1)

·dF (ε)

dε

∣∣∣
ε=ε1

]
= −2u

(
cos
(
dGeo

(
X, f(λf )

)))
· ‖g(λf )‖

· cos
(
θ(λf , X)

)
· sin

(
dGeo

(
X, f(λf )

))
(18)

= −2dGeo
(
X, f(λf )

)
· 1

sin
(
dGeo

(
X, f(λf )

))
· ‖g(λf )‖ · cos

(
θ(λf , X)

)
· sin

(
dGeo

(
X, f(λf )

))
= −2dGeo

(
X, f(λf )

)
· ‖g(λf )‖ · cos

(
θ(λf , X)

)
,

(19)

In the case of dGeo
(
X, f(λf )

)
= 0, the same result follows

since both (18) and (19) are zero. Thus, by Proposition 5,
the equation (19) is established for a.e. X ∈ B(ζ). Next,
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we notice that, for a smooth curve f , it can be shown that
Mλ := {x ∈ S2 | λf (x) = λ} is a subset of the great circle
perpendicular to f at f(λ) by Lemma 2. Let Sλ be the great
circle perpendicular to f at f(λ). That is, Mλ ⊂ Sλ ∼= S1.
Moreover, a connected proper subset of Sλ is isometric to
a line with the same length in R, which makes the intrinsic
mean on Mλ feasible. Note that if the length is less than
π/2, the intrinsic mean is unique. Thus, f is an intrinsic
principal curve of X , by the definition of θ(λf , X) and
cos(π − θ) = − cos(θ), if and only if

E
[
dGeo

(
X, f(λf )

)
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
]

= 0,

for a.e. λ.

Finally, it follows, from (19) and by the bounded conver-
gence theorem, that

∂EX
[
d2Geo(X, f + εg)

]
∂ε

∣∣∣
ε=0

= lim
ε→0

[EX[d2Geo(X, f + εg)
]
− EX

[
d2Geo(X, f)

]
ε

]
= EX

[
lim
ε→0

d2Geo(X, f + εg)− d2Geo(X, f)

ε

]
= Eλ

[
E
[

lim
ε→0

Zε(X)
∣∣ λf (X) = λ

]]
= −2Eλ

[
E
[
dGeo

(
X, f

(
λf (X)

))
·
∥∥g(λf (X)

)∥∥
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
]]

= −2Eλ
[
‖g(λ)‖ · E

[
dGeo

(
X, f

(
λf (X)

))
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
)]]

= 0.

Conversely, we assume that

Eλ
[
‖g(λ)‖ · E

[
dGeo

(
X, f

(
λf
))
· cos

(
θ(λf , X)

)∣∣ λf (X) = λ
]]

= 0,

for all f + g(= h) such that ‖g‖ 6= π and ‖g′‖ ≤ 1. It follows
that

E
[
dGeo

(
X, f(λf )

)
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
]

= 0,

for a.e. λ,

which is equivalent to that f is an intrinsic principal curve
of X .

APPENDIX D
INFLUENCE OF T AND q.
Here we discuss the influence of the hyperparameters T and
q. To this end, we consider the waveform simulated data
used in Section 4.2.1. Figure 4 visualizes the fitted curves by
the proposed extrinsic method for various q’s in the range
of [0.01, 0.1] at intervals of 0.01 with a fixed T = 500. As
shown in the top panels of Figure 4, the resulting curve with
q = 0.01 is wiggly, and the curve with q = 0.1 is almost flat.
In general, the curves tend to overfit data when the q value
is small, whereas the curves tend to underfit data when the
q value is large. On the other hand, the bottom panels of
Figure 4 show the fitted curves by the same method for a
fixed q = 0.06 and varying T in {10, 20, 50, 100, 200, 500}.
The curve of the bottom left panel implemented by a small
T value, such as T = 10, does not represent the data well.
For appropriate T values, the spherical principal curves of

Figure 4: Noisy waveform simulated data (blue). (Top left)
Extrinsic principal curves with q = 0.01 (green) and 0.02
(pink) for fixed T = 500. (Top right) Influence of varying q
over [0.03, 0.1] with a step size 0.01 (from yellow to brown)
for fixed T = 500. (Bottom left) Extrinsic principal curves
(purple) with T = 10 and q = 0.06. (Bottom right) Influence
of varying T in {20, 50, 100, 200, 500} (from violet to red) for
a fixed q = 0.06.

the right panel successfully recover the underlying structure
of the data.
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