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Abstract

We propose a novel machine learning approach for inferring causal variables of a target
variable from observations. Our focus is on directly inferring a set of causal factors without
requiring full causal graph reconstruction, which is computationally challenging in large-
scale systems. The identified causal set consists of all potential regulators of the target
variable under experimental settings, enabling efficient regulation when intervention costs
and feasibility vary across variables. To achieve this, we train a neural network using super-
vised learning on simulated data to infer causality. By employing a local-inference strategy,
our approach scales with linear complexity in the number of variables, efficiently scaling up
to thousands of variables. Empirical results demonstrate superior performance in identify-
ing causal relationships within large-scale gene regulatory networks, outperforming existing
methods that emphasize full-graph discovery. We validate our model’s generalization ca-
pability across out-of-distribution graph structures and generating mechanisms, including
gene regulatory networks of E. coli and the human K562 cell line. Implementation codes
are available at https://github.com/snu-mllab/Targeted-Cause-Discovery.

1 Introduction

Identifying causal relationships among variables is a fundamental challenge in machine learning, with
widespread applications in generative modeling, system explanation, and variable control (Pearl, 2009).
Conventional methods have attempted to infer causal structures using statistical tests or by fitting proba-
bilistic models to observations (Spirtes et al., 2001; Chickering, 2002). However, the exponential complexity
of causal graphs renders the problem NP-hard (Chickering, 1996), posing significant challenges for large-scale
systems (Zanga et al., 2022).

In this study, we propose a scalable method for identifying causal variables of a target variable from obser-
vations in large-scale systems, such as gene regulatory networks (GRNs) (Karlebach & Shamir, 2008). Our
approach aims to identify both direct and indirect causes that can regulate the target variable under exper-
imental conditions (Figure 1). Rather than reconstructing an entire causal graph, we focus on identifying
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a set of causal factors, simplifying the estimation process while retaining practical utility. For instance, in
GRNs, identifying causal transcription factors of a target gene is crucial for drug development, as it en-
ables regulation of target gene expression (Huynh-Thu et al., 2010). However, interventions on transcription
factors differ in feasibility and cost (Martin & Sung, 2018). By identifying not only direct causes but also
all relevant causal factors, our approach prioritizes transcription factors that are more accessible and cost-
effective to manipulate, thereby streamlining the development process. We introduce this problem setting
as targeted cause discovery.

Target variable Causes of target

Figure 1: Illustration of targeted cause dis-
covery in a causal graph. Instead of inferring
the full causal graph structure, we identify a
set of causal variables for a target.

An alternative to our proposed method involves inferring
causal variables by traversing the ancestors of a target within
a causal graph derived from existing causal discovery tech-
niques. However, estimating complete causal graphs becomes
computationally prohibitive for systems with thousands of
variables (Zanga et al., 2022). Furthermore, imperfect infer-
ence from limited observations leads to error accumulation at
each step of ancestral traversal, resulting in exponentially in-
creasing inaccuracies. We explore this issue in greater detail
in Section 3.

To overcome these limitations, we propose an end-to-end ma-
chine learning approach that directly estimates a set of causal
variables from observational and experimental data. Our
method trains a deep neural network on simulated data to
learn a causal discovery algorithm that generalizes to unseen
causal structures (Ke et al., 2023). This data-driven approach allows the model to implicitly capture assump-
tions embedded in the simulated data. A key advantage of our method is to learn complex causal mechanisms
from data, such as differential equations, without requiring explicit formal modeling in score-based causal
discovery methods (Chickering, 2002; Zheng et al., 2018). We employ the Transformer architecture for our
causal discovery model (Vaswani et al., 2017), building on its demonstrated effectiveness in previous works
(Lorch et al., 2022). Nonetheless, the quadratic complexity of Transformer’s attention mechanism presents
computational challenges. To mitigate this, we introduce a local-inference strategy that scales linearly with
the number of variables, enabling efficient application to large-scale problems involving thousands of vari-
ables.

Empirical evaluations demonstrate that our method effectively identifies causal relationships within complex
systems involving thousands of variables (Section 5). We demonstrate our model’s capability to generalize
from randomly generated causal structures to real-world GRNs, including E. coli, yeast, and the K562 human
cell line (Dibaeinia & Sinha, 2020; Replogle et al., 2022). We further assess the robustness and generalization
capability of our approach through comprehensive evaluations on synthetic and real-world datasets, examin-
ing various graph structures, causal mechanisms, and noise types, underscoring its applicability in practical
scenarios.

2 Preliminary and Related Work

2.1 Problem Formulation

We consider a set of random variables V = {x1, . . . , xn} that has a causal structure represented by a directed
acyclic graph (DAG), G = (V, E). We assume the data-generating process involves no latent variables, and
for simplicity, we assume there is no selection bias (Pearl, 2009). The joint distribution p(V) is defined
as

∏
i p(xi | Pa(xi)) where Pa(xi) means the set of parent variables of xi in G. We obtain observations of

variables through ancestral sampling.
Definition 1. Causes for a target node xi is defined as the set of ancestors of xi in G, denoted by An(xi).
Definition 2. A variable xj is a marginal cause of xi if and only if ∃c s.t.

p(xi | do(xj = c)) ̸= p(xi).
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The operator do(·) represents an intervention that fixes specific variables to predefined values during the
ancestral sampling process (Pearl, 2009). Specifically, the observation for V under do(xj = c) follows
δc(xj)

∏
i ̸=j p(xi | Pa(xi)), where δc is a Dirac delta function at c. Definition 2 implies that interventions on

causal variables make a distributional change in the target variable.
Proposition 1. A set of marginal causes of xi is the subset of An(xi).

We provide the proof for Proposition 1 in Appendix A. This proposition implies that the ancestor set An(xi)
forms a necessary condition for identifying variables that influence the target variable xi in experimental
settings. Specifically, in large, sparse networks such as GRNs, efficiently identifying these influential variables
can facilitate effective control of target variables. We refer to the task of identifying the set of causes An(xi)
of a target variable xi as targeted cause discovery.

2.2 Related Work

Causal discovery Conventional causal discovery methods aim to infer the exact causal graph structure G
from observations (Spirtes et al., 2001; Chickering, 2002). These approaches can be broadly categorized into
constraint-based and score-based methods. Constraint-based methods use conditional independence tests and
formalized directional decision rules to identify causal relationships (Spirtes et al., 1995; 2001). However,
they require independence testing over combinatorial sets of variables, leading to exponential complexity in
the number of variables (Colombo et al., 2014). Subsequent works have sought to reduce this complexity by
leveraging sparsity assumptions in causal structures with Gaussian mechanisms (Kalisch & Bühlman, 2007)
or by improving computational efficiency through parallelization (Le et al., 2016). Score-based methods,
on the other hand, optimize the goodness-of-fit of graph structures while balancing complexity constraints
(Chickering, 2002; Hauser & Bühlmann, 2012; Zheng et al., 2018; Brouillard et al., 2020). To navigate
the combinatorial search space of causal graphs, these approaches rely on specific assumptions about graph
structures and data-generating mechanisms (Lopez et al., 2022). An alternative line of research focuses on
estimating the topological ordering of causal variables, which helps reduce optimization complexity (Reisach
et al., 2021; Sanchez et al., 2023).

Local approaches To address the computational challenges of estimating full causal graphs, some efforts
have focused on inferring the local causal structure of a target node, such as the Markov blanket (Aliferis
et al., 2010; Wu et al., 2019), parent set (Gao & Ji, 2015), or parent-cause set (Yin et al., 2008). However,
these approaches still suffer from an exponential search space, requiring efficient algorithms for large-scale
settings (Gao & Ji, 2015). Magliacane et al. (2016) introduced the problem of estimating ancestral structures.
The key difference from our work is that their approach considers the ordering of ancestral nodes (or causes),
whereas we do not impose any ordering constraints. By removing the order constraint, we reformulate our
training objective as a binary classification task—determining whether a given node is a cause of the target
based on observations of all other nodes. This simplification enables us to develop a scalable method for
both training and inference.

Learning-based approaches Recent efforts have introduced learning-based approaches that leverage
large datasets and computational power for causal discovery (Lopez-Paz et al., 2015; Löwe et al., 2022;
Lorch et al., 2022; Ke et al., 2023; Wu et al., 2024). These methods generate synthetic data with known
ground-truth causal graphs and train neural networks to infer graph structures from observations (Lorch
et al., 2022). In this work, we analyze the generalization performance of these data-driven approaches in
large-scale, complex systems. Specifically, we propose a novel strategy that identifies a set of causal variables
for a target with linear complexity, enabling efficient scaling to thousands of variables.

GRN inference Gene regulatory network (GRN) inference aims to uncover directed causal influences
among genes rather than merely identifying co-expression or correlation patterns (Badia-i Mompel et al.,
2023). Representative approaches include ARCANE, which employs information-theoretic algorithms (Mar-
golin et al., 2006), and GENIE3, which uses an ensemble of regression trees to predict each gene’s expression
based on all other genes (Huynh-Thu et al., 2010). While conventional causal discovery methods can be
applied to GRN inference, they face significant challenges due to the large network sizes, complex causal
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mechanisms, and technical noise (Dibaeinia & Sinha, 2020). Recent advancements in sequencing technolo-
gies have enabled the collection of interventional data, such as gene knockout experiments, which provide
more reliable identification of causal regulators (Replogle et al., 2022). Additionally, recent efforts have
focused on developing simulators that generate single-cell gene expression data by modeling the stochastic
nature of transcription based on user-provided causal graph structures (Dibaeinia & Sinha, 2020). Our data-
driven learning approach leverages these advancements in data collection and simulation, demonstrating the
potential of data-driven methods for GRN inference.

3 Targeted Cause Discovery versus Structure Discovery

Targeted cause discovery offers several technical advantages over causal structure discovery, particularly in
addressing the shortcomings of conventional methods when the primary objective is to identify the causes
of a specific target. In this section, we compare our approach, which directly estimates the set of causes,
with an alternative method that infers causes by traversing the ancestors of the target within an estimated
causal graph.
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Figure 2: Targeted cause discovery error rate as
a function of shortest path length between nodes.
Cause refers to our method, which directly esti-
mates the causes of a target, whereas Structure
denotes a counterpart method that infers causes
from an estimated causal graph. Both methods
use the same model architecture and dataset but
differ in their training objectives and inference al-
gorithms. We provide detailed experimental set-
ting in Appendix B.6.

Table 1: Averaged ratio of causes (or parents) per
node, i.e., |An(x)|/n (or |Pa(x)|/n). We draw
statistics from 10 graphs, each with 1000 nodes
and an average in-degree of 2.

Graph type Parent Cause
Erdős–Rényi 0.2% 1.1∼1.2%
Scale-free 0.2% 0.4∼2.2%
Gene regulatory 0.2% 0.5∼1.1%

1) Error propagation in estimation: With a limited num-
ber of observations, causal structure discovery methods
have prediction errors (Lorch et al., 2022). When causes
are inferred from an inaccurately estimated causal graph,
these errors propagate exponentially: If a method has
an expected prediction error rate of e per edge, the er-
ror rate for estimating causes at a distance d from the
target is approximately 1− (1− e)d. Our approach miti-
gates this issue by directly inferring causality among dis-
tant variables, avoiding the error propagation inherent in
graph-based traversal. Figure 2 presents empirical mea-
surements of prediction error rates across different cause-
effect distances. The results show that our method main-
tains a stable error rate regardless of distance, whereas
error rates in causal structure discovery methods increase
as the cause-effect distance grows.

2) Technical challenges in training: In learning-based
causal discovery, neural networks are typically trained to
predict the adjacency matrix of a causal structure (Ke
et al., 2023; Lorch et al., 2022). However, due to the spar-
sity of causal graphs, the resulting binary adjacency ma-
trix is highly imbalanced, posing significant training chal-
lenges. For instance, in the E. coli GRN, there are only
about 2.3 edges per node among 1,565 nodes (Dibaeinia
& Sinha, 2020). Such an extreme imbalance is known to
hinder neural network training by providing sparse learn-
ing signals from the loss function (Kaur et al., 2019). In
contrast, our approach trains neural networks to predict
ancestors rather than the full adjacency matrix. This for-
mulation mitigates the sparsity issue as shown in Table 1,
thereby improving training stability and effectiveness.

3) Local Inference Guarantee: Targeted cause discovery enables local inference, allowing the identification of
causal relationships using only a subset of the system’s variables (Proposition 2). Specifically, a cause of a
target variable xi remains a cause within a subsampled variable system (Bongers et al., 2016). This property
is particularly useful in large-scale settings, where processing data from all variables is computationally
infeasible. Leveraging this property, we propose an efficient algorithm capable of scaling to thousands of
variables, as detailed in Section 4.2. It is worth noting that local inference is non-trivial for causal structure

4



discovery, as the direct causal structure can change within a subsampled variable system. We provide a
proof of this proposition in Appendix A.
Proposition 2. For any variable subset V ⊂ V s.t. containing xi and all root variables in G, let An(xi; V )
denote the set of ancestors of xi in the system consisting of V , following the marginalization rule of Bongers
et al. (2016). Similarly, let Pa(xi; V ) denote the set of parents of xi within V . Then, An(xi; V ) = An(xi)∩V .
However, a counterexample exists for parents: Pa(xi; V ) ̸= Pa(xi) ∩ V .

4 Method

In this section, we present our method for Targeted Cause Discovery with Data-driven Learning, termed
TCD-DL. We consider a system with n variables V = {x1, . . . , xn} having an underlying causal structure
G. We denote the observation data as X ∈ Rn×m, where m is the number of observation samples. In
the interventional setting, we define a boolean matrix M ∈ {0, 1}n×m, where 1 indicates the occurrence of
interventions.

Our objective is as follows: Given a target variable xi ∈ V, predict a label li ∈ {0, 1}n from the observation
X and intervention matrix M , where li[j] = 1 indicates that xj is a cause of xi, i.e., xj ∈ An(xi). We adopt
a binary labeling approach, disregarding proximity in the causal graph, as quantifying causal contributions
based on proximity is non-trivial. To tackle this problem probabilistically, we estimate a continuous cause
score vector si ∈ Rn, where si[j] represents the unnormalized likelihood of xj being a cause of xi. A higher
score corresponds to a greater likelihood of causality. This continuous relaxation enables the use of gradient-
based optimization techniques, which are well-suited for large-scale settings (Bottou, 2010). To obtain a set
of estimated causes, we apply thresholding to si, considering values greater than zero as causes.

4.1 Data-Driven Learning

A straightforward approach to discovering causality involves conducting interventions on every single variable
with a statistically sufficient number of trials to confirm the hypothesis. However, it is often impractical
to intervene at every single variable due to experimental limitations and the high costs associated with
conducting a sufficient number of trials (Addanki et al., 2020).

To address this challenge, we develop a parameterized model fθ capable of inferring causality among variables
from observations X ∈ Rn×m of arbitrarily limited size. Given the target variable index i, the model processes
the entire dataset X with intervention matrix M and returns a cause score vector si ∈ Rn as

si = fθ(X, M, i). (inference)

By leveraging observations from all nodes, we can infer causal relationships more accurately than relying
solely on the observations of a single pair of variables. We discuss this in more detail in Section 5.4.

We implement fθ as a deep neural network and train on simulated data D = {(Xk, Mk,Gk) | k ∈ I} using
a supervised learning approach. Here, I denotes an index set, and Xk represents an observation dataset
sampled from a synthetic causal graph Gk with an intervention matrix Mk. We generate synthetic datasets
using a simulator on random graphs, as detailed in Section 5. Empirically, we demonstrate that the model
generalizes to unseen causal structures and causal mechanisms, achieving strong performance on real-world
datasets (Section 5.3). For a causal graph Gk with nk variables, we obtain a label lk,i ∈ {0, 1}nk for each
variable i = 1, . . . , nk using topological sorting. The label is defined such that lk,i[j] = 1 if the j-th variable
is a cause of the i-th variable in Gk. Our training objective, with prediction fθ(Xk, Mk, i) ∈ Rnk , is

minimize
θ

Ek∼IEi∼{1,...,nk}[L(fθ(Xk, Mk, i), lk,i)], (training)

where L is the loss function. In this study, we use binary cross-entropy with logits for L (Wei et al., 2022),
ignoring the loss at the target node’s position.

Acyclicity. Our problem focuses on estimating a set of causes rather than inferring the full causal graph
structure, and therefore does not require explicitly enforcing an acyclicity constraint. Moreover, our super-
vised learning approach leverages training labels extracted from a DAG, which contains no cycles. Training
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Figure 3: Overview of our method. The left figure depicts a single training step, while the right figure
illustrates the inference procedure with multiple subsampling and ensembling. Note that the intervention
matrix M undergoes the same subsampling as X, resulting in the stacked input [XV,O, MV,O] of shape
n′×m′×2, which is then fed into the model fθ. We omit the intervention matrix in the figure for simplicity.

on such data provides implicit guidance for our model to generate causal predictions that are consistent and
non-contradictory.

Model architecture. The model fθ comprises two sequential modules, a feature extractor gθ and a
score calculator h, designed to optimize compute efficiency. The feature extractor gθ processes the stack
[X, M ] ∈ Rn×m×2 to produce features F1, F2 ∈ Rn×d, where each variable index i corresponds to two d-
dimensional features F1[i], F2[i] ∈ Rd. We employ an axial-Transformer as the feature extractor (Ho et al.,
2019), a matrix-input variant of Transformers that has been a conventional architecture in prior learning-
based approaches (Lorch et al., 2022; Ke et al., 2023). Notably, our framework is compatible with general
model architectures designed for matrix-shaped inputs. A detailed description of the model architecture is
provided in Appendix B.1.

The score calculator h computes the cause score vector si for a target index i using dot-product between
features as h(F1, F2, i) = F1F2[i] ∈ Rn, where F1 ∈ Rn×d and F2[i] ∈ Rd. To sum up, fθ(X, M, i) =
h(gθ(X, M), i) = h(F1, F2, i). The use of a separate feature extractor allows for the reuse of features across
multiple target indices i, enhancing training efficiency with batch data processing.

4.2 Local Inference for Scaling Up

The axial Transformer comprises three main operations: two attention layers over each variable and obser-
vation dimension, and a feed-forward layer (Ho et al., 2019). For an input X ∈ Rn×m, the complexities of
attention layers are O(n2m) and O(nm2), while the complexity of the feed-forward layer is O(nm). The
quadratic complexity of the attention mechanism poses challenges for large inputs in terms of computational
time and memory usage. In Appendix B.4, we present a detailed analysis of the experimental scales and
discuss the computational challenges.

To address this issue, we propose a local inference strategy (Figure 3), supported by Proposition 2, which
estimates the causes of a target variable using subsampled variables and observations. Specifically, we
define subsample sizes n′ ≪ n for variables and m′ ≪ m for observations, set independently of n and
m, based on available computing resources. Given a target variable xi, we randomly sample a subset of
variables V ⊂ V with |V | = n′, ensuring xi ∈ V . We then extract the corresponding observation matrix
XV ∈ Rn′×m and intervention matrix MV ∈ {0, 1}n′×m. To avoid distortion from interventions on variables
outside the subsampled set V , we select only those observations (columns of XV ) where no variables in
V \ V are intervened. From these, we randomly subsample m′ observations, yielding XV,O ∈ Rn′×m′ and
MV,O ∈ {0, 1}n′×m′ , where O denotes the selected observation indices. We denote this subsampling process
as V, O ∼ S(X, M, i).
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We then locally infer the causal effects on xi from variables in V using fθ(XV,O, MV,O, i) ∈ Rn′ . Repeating
this process across multiple subsamplings of variables and observations, we aggregate and average the results
to compute the final cause score vector si. For a variable xj ∈ V , we denote the estimated cause score to xi

as fθ(XV,O, MV,O, i)[j]. (Here, j refers to the index in V, but for clarity, we retain the same index notation
within V .) The final estimation is then

si[j] = EV,O∼S(X,M,i)
[
fθ(XV,O, MV,O, i)[j] | xj ∈ V

]
. (ensembled local-inference)

For training, we apply the identical random subsampling strategy on inputs and target labels. For Xk and
a target variable index i, we denote the subsampled data as Xk,V,O ∈ Rn′×m′ and the corresponding target
label as lk,i,V ∈ Rn′ . The local version of our training objective becomes

minimize
θ

Ek∼IEi∼{1,...,nk}EV,O∼S(Xk,Mk,i)[L(fθ(Xk,V,O, Mk,V,O, i), lk,i,V )]. (local training)

We optimize fθ using stochastic gradient descent with the AdamW optimizer (Loshchilov & Hutter, 2019).
Algorithms 1 and 2 describe pseudo codes of our final training and inference algorithms. We leave detailed
hyperparameters in Appendix B.2.

Algorithm complexity. Our algorithm reduces the inference complexity from quadratic to linear with
respect to the number of variables n. Specifically, we fix the subsample size n′ as a constant across all
experiments, regardless of the variable size n. By splitting the inputs into fixed-size chunks of n′ and repeating
the Transformer computation n/n′ times, we achieve a computational complexity of O(n′2 ·n/n′) = O(nn′),
reducing the original complexity of O(n2). Proposition 3 provides a detailed complexity analysis of our
inference algorithm, with a proof included in Appendix A.

Proposition 3. Let n′ and m′ denote the subsampled variable and observation sizes, and let T denote the
ensemble size. For a dataset X with n variables, the inference complexity of our algorithm is O(nm′T (n′ +
m′)).

Algorithm 1 Training (batch version)
inputs: D = {(Xk, Mk,Gk) | k ∈ I}
parameters: subsample sizes n′ and m′, batch
size b
initialize θ
repeat
X ,Y ← ∅, ∅
for j = 1 to b do

k ← sample from I
V, O ← subsample given Xk, Mk

X ← X ∪ {(Xk,V,O, Mk,V,O, i) | xi ∈ V }
Y ← Y ∪ {lk,i,V | xi ∈ V }

end for
g← calculate gradients ∇θL(fθ(·), ·) on X ,Y
θ ← update using gradients g

until convergence
return θ

Algorithm 2 Inference
inputs: X ∈ Rn×m, M ∈ {0, 1}n×m, target in-
dex i
parameters: subsample sizes n′ and m′, #en-
semble T
initialize si ← 0n

for t = 1 to T do
I ← permute({1, . . . , n} \ {i})
split I = ∪b

j=1Ij where b = ⌈ n
n′ ⌉ and |Ij | ≤ n′

for j = 1 to b do
Ij ← Ij ∪ {i} and V ← {xk | k ∈ Ij}
O ← subsample given V, X, M
si[Ij ]← si[Ij ] + fθ(XV,O, MV,O, i)

end for
end for
si ← si/T
return si

5 Experiment

We present an experimental analysis of out-of-distribution (OOD) settings for targeted causal discovery. In
Section 5.2, we verify that our model, trained on random graphs, effectively identifies causal relationships in
biological networks consisting of several thousand variables. In Section 5.3, we examine the model’s general-
ization capabilities with respect to novel causal mechanisms and varying noise levels, including analyses on
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a real-world human gene dataset. Finally, in Section 5.4, we analyze interventional settings and assess sen-
sitivity to hyperparameters. To compare against conventional algorithms such as PC and GIES, we conduct
additional small-scale experiments detailed in Appendix C.2.

5.1 Setup

Simulated dataset. We generate the training set D and test set using the SERGIO GRN simulator
(Dibaeinia & Sinha, 2020). This simulator produces single-cell gene expression data, modeling the stochastic
nature of transcription based on a user-provided causal graph structure. We conduct experiments over
varying levels of simulator’s observational fidelity, where higher fidelity yields expression data closer to
the population parameters. Details about the simulator, including the generation mechanisms and the
definition of fidelity levels, are provided in Appendix B.3. For the training dataset, we use random graph
structures including Erdős–Rényi (ER), Scale-Free (SF), and Stochastic Block Model (SBM) with 1,000
variables (Drobyshevskiy & Turdakov, 2019). The test data is generated from biological structures of E. coli
(1,565 genes) and yeast (4,441 genes) as obtained from Marbach et al. (2009).

Intervention. We adopt the intervention settings from Lorch et al. (2022). Specifically, we perform single-
variable interventions by knocking out gene expressions, i.e., setting their transcription rates to zero. We gen-
erate 10 samples per intervention, along with 500 observational samples (details provided in Appendix B.3).
In Figure 8, we analyze model performance under various intervention scenarios, including different ratios
of intervened nodes and multi-variable interventions.

Identifiability. Our method shares similar identifiability considerations with existing learning-based ap-
proaches (Lorch et al., 2022; Ke et al., 2023). In particular, we focus on experimental settings with single-node
interventions, where the true causal structure is theoretically identifiable in the limit of infinite interventional
data from each variable (Eberhardt et al., 2006). In practice, however, the number of available interventional
samples is typically limited, precluding full identifiability guarantees. To address this, we propose a proba-
bilistic framework designed to provide calibrated estimates of causal relationships given the available data,
rather than enforcing strict identifiability. This design reflects a practical trade-off, enabling the model to
generate causal predictions that are consistent with observed data, even in low-sample regimes. Empirically,
we find that our approach yields meaningful and robust causal inferences under realistic data constraints, as
illustrated in Figure 8.

Baseline. We comprehensively evaluate causal discovery methods drawn from various methodological
frameworks. As baselines, we include a random guessing model, the absolute correlation score, and a
regression-based method known as sortnregress (Reisach et al., 2021). Additionally, we compare against the
score-based approach DCD-FG (Lopez et al., 2022), an improved method designed to address instability
issues by DCDI (Brouillard et al., 2020) and NO-TEARS (Zheng et al., 2018) in large-scale settings (Kaiser
& Sipos, 2022). We evaluate the learning-based approach AVICI (Lorch et al., 2022) by utilizing their re-
leased model, which was trained on the same simulator and comparable amount of data as ours. It is worth
noting that AVICI closely aligns with the concurrent method CSIVA (Ke et al., 2023), while CSIVA does not
provide source code or trained models. Conventional algorithms such as PC and GIES (Spirtes et al., 2001;
Hauser & Bühlmann, 2012) are evaluated separately in small-scale experiments due to their limited scala-
bility (Appendix C.2). We assess representative GRN inference methods, including the tree-based method
GENIE3 (Huynh-Thu et al., 2010) and the linear factor model PMF-GRN (Skok Gibbs et al., 2024). All
mentioned methods, except PC, compute likelihood scores indicative of (direct) causal relationships among
variables. We utilize these likelihood scores to construct baseline causal score vectors si.

Evaluation metric. We evaluate the targeted cause discovery performance on variables having at least
one causal variable. For each target variable, we compare the predicted cause score vector against the
ground-truth binary label, where 1 indicates a causal relationship between variables. We employ AUROC,
Average Precision (AP), and F1 score for this binary classification task (Rainio et al., 2024). To calculate the
F1 score, we threshold the cause scores to match the number of positive predictions with the ground-truth
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Figure 4: Benchmarking results. (a) Performance on E. coli GRN with 1565 genes over varying levels
of simulator’s observational fidelity. We provide AUROC, AP, and F1 score values, including standard
deviations in Table 10. (b) The cause prediction error rate as a function of the shortest path length between
variables in a causal graph.

labels. We measure average performance across all valid variables (those with at least one cause) in test
datasets. We obtain statistics using expression data with 10 different random seeds for sampling.

5.2 Generalization on Unseen Causal Structure

Benchmarking. Figure 4-a illustrates the performance of targeted causal discovery on the E. coli GRN,
which has a novel causal structure not observed during training. Our approach consistently achieves the
best performance by a large margin, demonstrating the effectiveness of our data-driven learning approach.
The results reveal the shortcomings of existing methods relying on specific assumptions. Linear models
(correlation, sortnregress) fail to identify causality in our settings with complex generation mechanisms. As
a sanity check, we observe that correlation achieves 70.7% AUROC on causal graphs with linear generation
mechanisms, showing moderate performance under valid assumptions. The score-based approach (DCD-FG)
performs nearly at random, likely due to invalid assumptions about the factorizability of graph structures and
simplistic generation mechanisms (Lopez et al., 2022). Our method outperforms the learning-based approach
(AVICI), which focuses on direct causality and does not leverage local inference, thereby demonstrating the
effectiveness of our scalable algorithm.

Robustness to causal distance. To gain deeper insight into the observed performance improvements,
we measure the false-negative rate as a function of the shortest path length in the ground-truth causal graph
(Figure 4-b). To ensure a fair comparison, we threshold the causal scores of the best-performing methods so
that each produces an identical number of positive predictions. The results indicate that baseline methods
exhibit increasing error rates as causal distance grows, whereas our method maintains consistent performance.
These findings highlight a key advantage of our approach: it reliably identifies both proximal and distant
causes without performance degradation.

Table 2: AUROC (%) on random graphs
(validation) and E. coli GRN (test).

Data \ Fidelity High Medium Low
Validation 92.6 83.3 70.1
Test 94.6 81.7 71.5

Error analysis. While our model demonstrates strong perfor-
mance, there still remain errors, particularly as simulator fidelity
decreases. To investigate the sources of these errors, we com-
pare our model’s performance on random graphs sampled from
the training setting (i.e., validation set) to its performance on
E. coli graphs (i.e., test set). Table 2 reveals that both valida-
tion and test performance decline as simulator fidelity decreases.
This parallel degradation suggests that the primary source of error is not a generalization issue, but rather
stems from other factors. This finding raises questions about causal identifiability in low-fidelity scenarios,
indicating that the dataset itself may lack sufficient information for accurate causal inference.
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Figure 5: OOD performance. Box plots illustrating targeted causal discovery performance on novel graph
structures, mechanism parameters (mech.), and noise configurations unseen during training. For the E. coli
dataset, AVICI is the best-performing baseline method, whereas GENIE3 achieves the best results for yeast.

Runtime measurement. The runtime of our inference algorithm for processing each target variable is 2.5
seconds for E. coli (1,565 genes) and 7.8 seconds for yeast (4,441 genes), as measured with an NVIDIA RTX
3090 GPU. These results highlight that our model, with ensembled local inference, operates within seconds
for large-scale systems. We provide a comparison of the runtime with baseline methods in Appendix C.1,
where some baselines, such as DCD-FG and PMF-GRN, take several hours for inference.

5.3 Extened Out-of-Distribution Analysis

OOD simulator configuration. We further study the generalization capabilities of our model by testing
on causal mechanism and noise configurations that differ from the training. We adopt the configurations from
Lorch et al. (2022), as described in Appendix B.3. Figure 5 shows that our method largely outperforms the
baselines across all settings, demonstrating robust generalization. Notably, when only the graph structure
differs from training, our model shows high prediction capability. However, as generation mechanisms diverge
from the training setting, the performance variance increases. These findings show both the strengths of our
approach and the challenges inherent in generalizing to diverse generation mechanisms.
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Figure 6: Causal genes of MYC identified
by our method. Genes are categorized by
validation from STRING, existing litera-
ture, and top-20 expression correlations.
We note that existing literature validates
PTMA and RPS6 as effects of MYC.

Real-world human cell analysis. We test our simulator-
trained model in a real-world scenario using a Perturb-seq dataset
derived from the K562 cell line of a patient with chronic myeloge-
nous leukemia (Replogle et al., 2022). We focus on the gene MYC,
a key oncogene involved in cell proliferation, growth, and apop-
tosis, frequently overexpressed in cancers (Dhanasekaran et al.,
2022). We compute cause scores for 1,868 genes and select the top
20 genes as predicted causes of MYC expression (Appendix B.5).
One major issue here is that the exact structure of the human
GRN has not yet been fully elucidated. To evaluate our predic-
tions, we compare them with the following three sources, despite
their limitations: (1) The STRING database, which provides as-
sociations between proteins but does not indicate the causal di-
rection (Szklarczyk et al., 2023). (2) Existing literature that sup-
ports causality between a specific gene pair (Table 7). (3) Top 20
genes with the highest expression correlations to MYC. Figure 6
shows that our model demonstrates strong predictive accuracy,
achieving 90% precision compared to STRING. Notably, 30% of
our predictions are validated by existing literature, demonstrat-
ing that our model uncovers meaningful causal relationships. An
interesting observation is that only the gene EEF1A1 shows high
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Figure 7: Training source ablation analysis. The metric used is the relative AUROC, with 100 indicating
the best model’s performance on each test case and 0 corresponds to random prediction, i.e., 100(p −
prandom)/(pbest − prandom), where p denotes the AUROC score of a given model.

expression correlation with the target, suggesting that our method identifies novel causal factors not captured
by correlation ranking. In Appendix C.3, we quantitatively compare our method to correlation ranking to
support this claim and provide additional analysis of our model on leukemia-related genes, including the
predicted influence of causal genes. These results highlight our model’s potential for real-world applications
in understanding and manipulating gene regulation, particularly in the context of personalized medicine and
targeted cancer therapies.

Ablating training sources. To further assess the generalization capabilities of our approach, we per-
form ablation studies by excluding specific causal structures and mechanism types from the training data,
and evaluating the resulting models. In Figure 7-a, we utilize the simulator from Section 5.2 with various
graph structures, including Erdős–Rényi (ER), directional Scale-Free (SF-direct), Scale-Free (SF), and the
Stochastic Block Model (SBM) (Drobyshevskiy & Turdakov, 2019). In Figure 7-b, we vary the causal gen-
eration mechanisms to include different analytic functions (linear, non-linear multi-layer perceptron (MLP),
polynomial, and sigmoid), while maintaining a scale-free network structure. The function parameters are
set according to Wu et al. (2024).

Figure 7 illustrates the relative performance for each test case, scaled from 0 (random) to 100 (best). Both
subfigures exhibit similar patterns, where diagonal entries have relatively lower performance, indicating a
generalization gap when the testing data type is omitted from the training sources. Nonetheless, relative per-
formance consistently exceeds 90, highlighting the robust generalization capability of our method. Notably,
models trained on a diverse combination of all data types consistently achieve near-optimal performance.
This data-scaling effect is consistent with observations from large-scale language models (Brown et al., 2020),
suggesting that diversifying training data improves overall causal discovery performance.

5.4 Additional Analysis

Ratio of intervened nodes. We evaluate our model by varying the ratio of intervened nodes and the
number of intervention samples per node on the E. coli test dataset. To maintain a fixed dataset size,
we adjust the number of observational samples accordingly in each scenario. We select intervened nodes
randomly, and use a single model for evaluation across all settings. In this experiment, we disable the dropout
effect in the simulator (Appendix B.3), as the random removal of information can weaken interventional
signals and lead to misleading analyses.
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Figure 8: Intervention analysis. Performance on the E. coli GRN test dataset with varying intervention
settings. (a) Controlling the number of intervention samples per node in the test dataset. (b) Controlling
the ratio of intervened nodes among all nodes. A zero ratio indicates that only the observational samples are
used. (c) Performance with categorized intervention types. We categorize target nodes into four cases and
report average scores for each case: no intervention on the target and ancestors (None), intervention on at
least one ancestor and not on the target (Cause), intervention on the target and not on ancestors (Target),
and intervention on both (Both). (d) Causal direction prediction accuracy of our model across varying ratios
of intervened nodes.

From Figure 8-a, we observe that even with only one intervention sample per node (complemented by obser-
vational data), the model achieves reasonable performance, reaching an AUROC of 90.1%. As we decrease
the ratio of intervened nodes (Figure 8-b), performance decreases sublinearly. These results demonstrate
that our method effectively leverages interventional information to infer causality. Furthermore, the model
consistently provides meaningful predictions, even with limited intervention data, and surprisingly, performs
moderately well with purely observational data, achieving 65.3% AUROC. In Figure 8-c, we present cate-
gorized performance based on whether the target node itself or one of its causes has been intervened upon,
while varying the ratio of intervened nodes. Interestingly, as indicated by the None category in the figure,
we observe that even when neither the target node nor its causes are intervened on, the model achieves
moderate performance (∼82% AUROC) by leveraging interventional information on other variables.

Multi-node intervention. We conduct experiments involving multi-node interventions by increasing the
number of interventions per sample from 1 to 3 during both training and testing while keeping all other
configurations unchanged. In this scenario, we observe a slight performance drop from 94.6% to 93.7%
AUROC on the E. coli test dataset. We suspect this decline results from increased complexity due to the
combinatorial explosion in possible interventions, making it more challenging for the model to fully capture
relevant causal information. Nonetheless, exploring optimal intervention settings remains an important
direction for future research.

Causal direction prediction. To verify that our model indeed infers causality beyond mere correlation
learning, we measure the causal direction prediction accuracy across varying ratios of intervened nodes
(Figure 8-d). Specifically, for every pair of nodes i and j with a known causal relationship, we estimated
the causal direction by comparing the cause scores si[j] and sj [i] predicted by our model. If si[j] > sj [i],
we predicted j as the cause of i. Note that random guessing achieves an accuracy of 50% for this task. As
shown in Figure 8-d, our model accurately predicts causal directions under the full-node intervention setting,
while achieving 68% accuracy in the observational setting. This clearly demonstrates that our model indeed
infers causality beyond mere correlation learning.

Algorithm hyperparameter. We analyze the impact of design choices in our ensembled local-inference
strategy by sweeping the ensemble size T and the subsampled variable size n′ in Algorithm 2. Figure 9-a
demonstrates that performance improves as ensemble size increases, plateauing around 25. This result vali-

12



1 5 10 25 50
91

92

93

94

95

T

A
U

R
O

C
(%

)

(a) Ensemble size

30 50 100 200 300

89

91

93

95

n′

A
U

R
O

C
(%

)

(b) Subsampled input size

Figure 9: Hyperparameter analysis. Performance on E. coli GRN with varying (a) ensemble sizes T and
(b) input variable subsample sizes n′.

dates the effectiveness of our ensembled inference approach. Figure 9-b illustrates the effect of subsampled
variable size per input. Performance increases with input size up to 200, suggesting that processing larger
variable sets through a single Transformer forward pass allows the model to utilize richer relational infor-
mation. However, performance declines for input sizes exceeding 300, indicating conflicting effects between
input complexity and information richness. These results validate our approach of processing a subset of
variables, highlighting its effectiveness compared to processing all variables simultaneously.

6 Conclusion and Discussion

In this work, we propose an effective and scalable approach for targeted cause discovery, aiming to identify
a set of causal variables for a given target. Our method trains a neural network to learn causal discovery
algorithms from simulated data. To handle large-scale systems, we introduce a local-inference strategy that
achieves linear complexity with respect to the number of variables. Empirical results on gene regulatory
networks demonstrate that our approach significantly outperforms existing causal discovery baselines, ex-
hibiting strong generalization across diverse graph structures and generation mechanisms. By shifting the
focus from explicit causal modeling to a data-driven framework, our method aligns with recent advances in
deep learning. We anticipate further performance gains through data scaling within our scalable framework.
However, our reliance on data-driven black-box models comes at the cost of reduced interpretability. Bal-
ancing causal interpretability with the advantages of data-driven methods remains a crucial future direction
for targeted cause discovery.
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A Proofs and Definitions

Proposition 1. A set of marginal causes of xi is the subset of An(xi).

Proof. Consider the ancestor structure of node xi, defined as the subgraph of G containing the node set
xi ∪An(xi) and all corresponding edges. We denote this subgraph by Gi. For each node xj ∈ xi ∪An(xi), we
define the parent set restricted to this subgraph as Pa(xj | Gi) = Pa(xj)∩An(xi). Under the assumption of no
latent variables in G, the joint distribution over the ancestor structure factorizes as follows: p(xi∪An(xi)) =∏

xj∈xi∪An(xi) p(xj | Pa(xj | Gi)). For any node xk /∈ xi ∪ An(xi), a do-operation on xk does not affect the
ancestor structure since the node xk and all edges connected to xk are absent from Gi. Also, there are no
causal effects on the ancestor set Gi originating from nodes outside this set. Consequently, for all values
c, we have p(xi | do(xk = c)) = p(xi). According to Definition 2, it follows that xk /∈ xi ∪ An(xi) is not a
marginal cause of xi. This completes the proof by contraposition.

Proposition 2. For any variable subset V ⊂ V s.t. containing xi and all root variables in G, let An(xi; V )
denote the set of ancestors of xi in the system consisting of V , following the marginalization rule of Bongers
et al. (2016). Similarly, let Pa(xi; V ) denote the set of parents of xi within V . Then, An(xi; V ) = An(xi)∩V .
However, a counterexample exists for parents: Pa(xi; V ) ̸= Pa(xi) ∩ V .

Proof. Note that the marginalization rule of Bongers et al. (2016) on a node xl operates as follows: (1) every
direct path xi → xl → xj is replaced with a direct edge xi → xj , and (2) all remaining edges connected to xl

are removed. This marginalization rule preserves all causal relationships (i.e., the existence of a directed path
between nodes) after the removal of a node. Therefore, by definition, we have An(xi; V ) = An(xi) ∩ V . In
contrast, for direct causes (parents), the relationship may not hold. Consider a causal chain graph with three
variables: x1 → x2 → x3. By definition, Pa(x3) = {x2}. However, in the local system with V = {x1, x3},
x1 becomes the direct cause of x3, i.e., Pa(x3; V ) = {x1}. On the other hand, Pa(x3) ∩ V = ∅. Thus,
Pa(xi; V ) ̸= Pa(xi) ∩ V .

Proposition 3 (Algorithm complexity). Let n′ and m′ denote the subsampled variable and observation sizes,
and let T denote the ensemble size. For a dataset X with n variables and m observations, the inference
complexity of our algorithm is O(nm′T (n′ + m′)).

Proof. The set of n variables can be partitioned into ⌈ n
n′ ⌉ inputs. For each input, the complexities of

attention layers are O(n′2m′) and O(n′m′2), while the complexity of the feed-forward layers is O(n′m′).
Thus processing each variable once results in a complexity of O( n

n′ (n′2m′ + n′m′2)) = O(nm′(n′ + m′)).
Considering an ensemble size of T , the overall computational complexity becomes O(nm′T (n′ + m′)).

B Experimental Settings

B.1 Model Architecture

For the feature extractor gθ, we utilize an axial-Transformer without positional encoding to ensure permuta-
tion equivariance (Ho et al., 2019), i.e., if the variables are permuted, the model produces a correspondingly
permuted causality prediction. Each Transformer layer comprises two attention layers, one along the variable
dimension and one along the observation dimension, followed by a feed-forward layer (Figure 10). Both at-
tention and feed-forward layers include layer normalization and a skip connection (Ba et al., 2016). Detailed
configuration is provided in Table 3.

As described in Section 4.1, the input to the Transformer is a stack [X, M ] ∈ Rn×m×2, and the output is two
feature matrices F1, F2 ∈ Rn×d. In a basic axial Transformer, the output size for an input of size n×m× 2
is n×m× d, where d is the embedding dimension (Figure 10). We denote this output as H. To obtain the
feature matrix of size n× d, we first average the output H of size n×m× d along the observation dimension
m, resulting in a matrix of size n× d. We then apply two feed-forward layers and concatenate the results to
produce two feature matrices F1, F2 ∈ Rn×d. The total number of trainable parameters of our model is 62k.
We will release the code for our model as open-source.
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Figure 10: Computational flow of our feature extractor gθ. We indicate the size of the inputs for each
module above the arrows, with only the embedding and pooling modules changing the sizes. For simplicity,
normalization and skip connections are excluded from the figure. MLP indicates a two-layer perceptron with
non-linear activation (Vaswani et al., 2017).

Table 3: Architecture configuration.

Argument Value
Number of Transformer layers 10
Embedding dimension 16
Number of attention heads 16
Feed-forward layer hidden dimension 96

B.2 Training/Inference Configuration

Training configuration. We train a neural network using the AdamW optimizer (Loshchilov & Hutter,
2019), with training configurations detailed in Table 4. The batch size is chosen to fully utilize our GPU
memory (24GB). Training runs for a maximum of 40,000 steps, with early stopping applied if the validation
accuracy does not improve over a span of 4,000 steps, checked every 200 steps. The limit of 40,000 training
steps is set empirically, as we observed no further performance gains beyond this point on the training dataset
specified in Table 6.

We tune the learning rate from the set {6e-4, 8e-4, 1e-3}, finding that 8e-4 yields the most stable training
performance across all experimental settings. Notably, the optimal learning rate depends primarily on the
model configuration rather than on the dataset type. To further enhance training stability, we apply a
cosine learning rate scheduler, which reduces sensitivity to initial learning rates (Loshchilov & Hutter, 2017).
Dropout is not used in our experiments, as it empirically decreases performance. We hypothesize that the
local training and inference scheme, in which predictions are made based on partial information, inherently
reduces the need for dropout regularization.

Inference configuration. Figure 9 describes the configurations required for our inference procedure (Al-
gorithm 2). Hyperparameters are selected based on the analysis in Section 5.4. Note that we use the same
sizes, n′ and m′, during training. The observation size is set to 200, identical to the variable size, to fit
within our GPU memory constraints during training.

Computing environment. We conduct all experiments including training and inference, using a NVIDIA
RTX 3090 GPU with 24GB memory. The training time for models in Section 5.2 is approximately 9h, while
inference takes about a few seconds per target (Table 8).

Table 4: Training configuration.

Argument Value
Batch size 32
Training step 40,000
Learning rate 8e-4
Learning rate scheduler cosine
Weight decay 1e-5

Table 5: Inference configuration.

Argument Value
Subsampled variable size n′ 200
Subsampled observation size m′ 200
Ensemble size T 50
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B.3 GRN Simulator

We use the SERGIO GRN simulator in our experiments (Dibaeinia & Sinha, 2020). Given a user-defined
GRN, the simulator generates a gene expression matrix based on a specified cell type configuration.

Generation mechanism. The simulator samples gene expressions from the steady state of a dynamic
system modeled as stochastic differential equations (Dibaeinia & Sinha, 2020). Master regulators (i.e., root
nodes in the causal graph) operate independently without external regulatory inputs, evolving with fixed
production and decay rates. The regulatory influence of each gene is represented by a Hill function with
pre-determined interaction parameters (Chu et al., 2009). This mechanism captures non-linear relationships
and time-lagged effects, providing a realistic model of gene behavior.

Technical noise. The simulator produces datasets that reflect the statistical properties of real-world
single-cell experimental data, incorporating several types of measurement errors and technical noise. The
simulator applies these technical noises sequentially to the expression data sampled from the stochastic
differential equations:

1. Dropouts: A high proportion of gene expressions (typically 60-95%) are randomly set to zero,
simulating the dropout effect common in single-cell technologies.

2. Outlier genes: Some genes are assigned unusually high expression levels, replicating the presence of
outliers.

3. Library size: The total expression level for each cell (known as library size) follows a log-normal
distribution, reflecting the variability.

Observational fidelity. To generate the unique molecular identifier (UMI) count expression matrix, a
quantification scheme in single-cell RNA-sequencing, the simulator applies Poisson random sampling to the
expression values λ after incorporating the technical noises (Chen et al., 2018). That is, the final observation
value v is derived as v ∼ Poisson(λ). To evaluate the impact of this Poisson sampling process on targeted
cause discovery performance and to determine the performance ceiling of our method, we control the fidelity
of the Poisson sampling and define three levels:

1. High fidelity: Uses expression λ directly as the observation.
2. Medium fidelity: Uses the mean of 100 samples drawn from Poisson(λ).
3. Low fidelity: Uses a single sample drawn from Poisson(λ).

In Figure 4, we analyze the performance differences across varying levels of the simulator’s observational
fidelity. Unless otherwise specified, we use the high-fidelity setting for our analysis.

Intervention. We use the interventional setting identical to Lorch et al. (2022). Specifically, we perform
gene knockout by setting the expression level of a specific gene to zero. We sample 10 intervened observations
per gene. For example, given a GRN with 1000 genes, this results in an interventional dataset with 10,000
observations. From these observations and variables, we randomly sample subsets of size n′ = 200 and
m′ = 200, as provided in Table 5.

B.4 Simulated Dataset

We summarize the configurations of datasets used in our experiments in Table 6, adopted from Lorch et al.
(2022). We generate training data using random graphs while testing on biological GRNs, E. coli (1,565
genes) and yeast (4,441 genes), obtained from Marbach et al. (2009). Figure 11 shows the degree histograms
of these graph structures, highlighting the different patterns between biological graphs and random graphs.
We generate interventional data by performing gene knockout on each gene, obtaining 10 observations per
intervention. For yeast, we obtain 5 observations per intervention due to its larger gene count. We include
500 observational data points and conduct inference using a mixture of observational and interventional
data. We preprocess each observation matrix using log2 counts-per-million (CPM) normalization following
previous works (Lorch et al., 2022).
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Figure 11: Edge degree histograms of graph structures considered in our experiments. All graphs have an
average degree of 2. Blue represents the in-degree histogram, and red represents the out-degree histogram.

For the out-of-distribution (OOD) analysis in Figure 5, we adopt configurations from Lorch et al. (2022)-Table
4. These configurations include varying mechanism function parameters, such as Hill function coefficients
and decay rates, which differ from the training settings. We also test models on OOD technical noise types,
as described in Table 6. These noise types reflect the statistics of different experimental datasets, which have
varying dropout percentages, outlier ratios, and library size distributions (Lorch et al., 2022).

Computational challenge. For the yeast dataset, each input comprises approximately 100 million en-
tries—2,000 times larger than the number of pixels in an image from ImageNet (Deng et al., 2009) and
500,000 times larger than the number of input tokens for Vision Transformers (Dosovitskiy, 2021). This
substantial size presents significant computational challenges for deep neural networks in memory usage and
computation time. To overcome this, we propose a local-inference strategy that efficiently processes datasets
across all considered scales.

B.5 Human Cell Dataset

This section describes a Perturb-seq dataset used in the human cell experiments (Figure 6). The dataset
contains gene expression data from the K562 cell line, which is derived from a patient with chronic myeloge-
nous leukemia (Replogle et al., 2022). The dataset includes both interventional and observational data on
gene expression. The intervention is performed through gene knockouts, identical to our simulation setting.

21



Table 6: Dataset configuration. Note for abbreviations used: ER (Erdős–Rényi), SF (Scale-Free), SF-
direct (directional Scale-Free), and SBM (Stochastic Block Model) (Drobyshevskiy & Turdakov, 2019). For
the training data, we randomly select the graph structure and edge degree independently from the candidate
sets. We use a slash (/) symbol to separately denote the statistics for E. coli and yeast GRNs. For the exact
configuration of technical noise, please refer to Table 4 in Lorch et al. (2022).

Argument Training set Test set
Graph structure {ER, SF, SF-direct, SBM} E. coli/yeast
Average edge degree {2,4,6} 2.3/2.1
Dataset size |D| per graph structure 150 10
Variable size (n) 1,000 1,565/4,441
Number of observations per intervention 10 10/5
Observation size (interventional) 10,000 15,650/22,205
Observation size (observational) 500 500
Number of cell types 10 10
Technical noise type 10x-chromium 10x-chromium
Technical noise type (OOD) - {illumina, drop-seq, smart-seq}

Table 7: Predicted causal gene interactions for target gene MYC by our method. It is worth note that the
absence of literature does not imply the invalidation of causality but rather indicates that the causality has
not yet been elucidated.

Target gene Causal gene Supported by

MYC

EEF1A1 TCD-DL, STRING, Literature (Li et al., 2023; Wilson et al., 2024), Correlation
NPM1 TCD-DL, STRING, Literature (Hong et al., 2023)
PTMA TCD-DL, STRING, Literature (Lin et al., 2015)
RPL26 TCD-DL, STRING, Literature (Gong et al., 2023)
RPL4 TCD-DL, STRING, Literature (Egoh et al., 2010)
RPS14 TCD-DL, STRING, Literature (Zhou et al., 2013)
RPS15A TCD-DL, STRING, Literature (Liang et al., 2019)
RPS6 TCD-DL, STRING, Literature (Ravitz et al., 2007)
RPL23A TCD-DL, STRING
NCL TCD-DL, STRING
HSPA8 TCD-DL, STRING
HIST1H2AE TCD-DL, STRING
RPL13 TCD-DL, STRING
ACTB TCD-DL, STRING
TUBB TCD-DL, STRING
TUBA1B TCD-DL, STRING
RPL26 TCD-DL, STRING
RPS18 TCD-DL, STRING
LST TCD-DL
VPS37C TCD-DL

From the Perturb-seq dataset, we obtain 1,868 genes that have undergone intervention. We conduct the
inference among these genes. For each intervention, we randomly subsample 10 observations. We also sam-
ple 500 observational data points, consistent with the number used in our training setting (Table 6). Using
this subsampled dataset, we run our TCD-DL inference algorithm to obtain cause scores for the target gene
MYC, applying the same CPM normalization scheme used in our simulation data (Appendix B.3).
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B.6 Setting for Error Propagation Analysis

This section details the experimental setup for Figure 2 (Section 3). We generate scale-free random graphs
with 100 nodes and define causal mechanisms using a two-layer perceptron with a Tanh activation function
(Wu et al., 2024). Root variables are sampled from a uniform distribution. Both approaches—estimating
the full causal structure and identifying a set of causal variables—are trained using the same Transformer
architecture. However, their final layers are modified to align with their respective objectives. Both methods
maintain the same number of model parameters and are trained on datasets of equal size. To enable a clear
comparison of how the false negative rate (FNR) evolves with increasing cause-effect distance, we threshold
the cause scores to ensure similar FNRs at a cause-effect distance of 1.

C Additional Experimental Results

C.1 Runtime Comparison

Table 8 compares the inference times of methods for targeted cause discovery. Some baseline methods
(sortnregress and GENIE3) can individually compute a cause score vector for a target, while other baselines
(AVICI, DCD-FG, PMF-GRN) require the calculation of the entire n × n score matrix to obtain a cause
score vector for a target. From the table, our method conducts inference within seconds even for the yeast
gene regulatory network (GRN) comprising 4,441 genes. In contrast, certain baselines encounter memory
issues (AVICI) or require substantial computation time (DCD-FG, PMF-GRN).

Table 8: Runtime measurement. We measure inference time for identifying the causes of a target variable
with an NVIDIA RTX 3090 GPU. OOM refers to the GPU out-of-memory error.

Species Sortnregress GENIE3 AVICI DCD-FG PMF-GRN TCD-DL (ours)
E. coli (1,565 genes) 0.9s 1.7s 3.1s 1h 55m 3h 2m 2.5s
yeast (4,441 genes) 2.8s 2.7s OOM 98h 31m 10h 46m 7.8s

C.2 Small-Scale Settings

In Table 9, we conduct experiments in small-scale settings, comparing our approach to conventional methods
such as PC and GIES (Spirtes et al., 2001; Hauser & Bühlmann, 2012). We train our model exclusively on
synthetic datasets generated with randomly parameterized analytic functions (linear, non-linear multi-layer
perceptron (MLP), polynomial, and sigmoid), while maintaining a scale-free random network structure with
10 nodes. For testing, we sample datasets with new causal mechanism coefficients and graph structures.
Additionally, we evaluate the methods on a real-world dataset called Sachs, which contains 11 variables
(Sachs et al., 2005). We obtain interventional data from bnlearn1, including six intervention types, each
applied to a single node. We sample a total of 100 observations for inference.

Given the DAG predicted by baseline methods, we apply topological sorting to obtain binary predictions for
ancestor relationships. For our approach, we threshold the cause scores at 0 to obtain binary predictions.
After inferring the causal structure, we measure binary classification accuracy for every pair of nodes to
determine if the method accurately predicts causal (ancestor) relationships. Table 9 demonstrates that our
method generalizes effectively to real-world settings with fewer nodes, highlighting its promising capabilities.

C.3 Analysis on Human Cells

Comparison to correlation ranking. As illustrated in Figure 6, our method identifies novel causal
factors for the gene MYC that are not captured by correlation ranking. To quantify the disparity between
our model’s predictions and correlation ranking, we analyze statistics across 1,868 genes from the Perturb-seq
dataset. The average rank correlation between our model’s cause scores and correlation-based rankings is

1https://www.bnlearn.com/book-crc/code/sachs.interventional.txt.gz
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Table 9: Performance on small graphs. We measure binary classification accuracy on a pair of nodes
to determine whether the method accurately predicts causality. TCD-DL (direct) refers to a variant of our
method that trains a model to predict direct causal structures. Each column denotes test datasets with
different causal structures and mechanisms. The number of nodes is 10, except for Sachs (Sachs et al., 2005),
which has 11. For PC, we use only observational samples.

Method Linear MLP Polynomial Sigmoid Sachs
PC 57.2 70.1 69.9 67.6 71.8
GIES 94.3 84.8 70.2 82.3 74.6
TCD-DL (direct) 96.5 86.4 82.3 89.7 75.5
TCD-DL 96.7 88.8 83.0 90.1 76.4

0.068, indicating low ranking similarity. When comparing the top 20 predictions from each approach, on
average only 1.1 genes appear in both sets. Notably, an average of 6.4 genes from our top 20 predictions are
validated by the STRING database, underscoring that our model identifies novel causal factors not captured
by correlation.

Identifying causes of leukemia-related genes. To further validate our predictions from the K562
Perturb-seq dataset, we use the Human Protein Atlas to identify a set of 29 target genes associated with
leukemia (Uhlén et al., 2015). We identify the top 10 causal predictions for each of these target genes,
including those with support from the STRING database, and visualize these interactions in Figure 12. We
further present the resulting GRNs for each leukemia target gene and its predicted causal regulators through
network diagrams in Figures 13 and 14. These visualizations highlight the potential regulatory roles of our
identified causal genes, providing insights into the predicted interactions driving leukemia. Validation against
the STRING database demonstrates that our approach generates well-supported and highly relevant causal
predictions.

Predicted influence of causal genes. We investigate the regulatory influence of each predicted causal
gene over leukemia-related target genes in Figure 15. Notably, nucleophosmin (NPM1) is predicted to
regulate 25 of the 29 leukemia target genes, receiving support from the STRING database for 21 of these
predictions. NPM1 mutations are prevalent in approximately one-third of adult Acute Myeloid Leukemia
(AML) cases, leading to an abnormal cytoplasmic localization of the NPM1 protein (Falini et al., 2020).
Although NPM1 mutations are primarily associated with AML, recent studies have identified them in a
small subset of Chronic Myeloid Leukemia (CML) patients (Young et al., 2021). The prediction that NPM1
regulates a substantial number of leukemia-associated target genes is particularly significant as it provides
insights into potential key regulatory mechanisms underlying leukemia pathology. Understanding how NPM1
influences these target genes in CML could reveal critical pathways involved in leukemia progression and
help identify novel therapeutic targets.
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TCD-DL, STRINGTCD-DL

Figure 12: Predicted causes of leukemia. The matrix illustrates the predicted causality of leukemia-
related target genes by TCD-DL predictions (blue) and TCD-DL predictions supported by STRING (green).
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Target gene
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(TCD-DL, STRING)

Causal gene 
(TCD-DL)

Figure 13: Predicted causes of a leukemia-related gene. GRNs illustrate the causal genes predicted
by TCD-DL (blue) and TCD-DL predictions supported by STRING (green) for each leukemia-related target
gene (pink).
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Causal gene 
(TCD-DL)

Figure 14: Predicted causes of a leukemia-related gene. GRNs illustrate the causal genes predicted
by TCD-DL (blue) and TCD-DL predictions supported by STRING (green) for each leukemia-related target
gene (pink).
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Figure 15: Predicted influence of causal genes. The histogram shows the number of leukemia-related
target genes predicted to be regulated by each causal gene, with predictions made by TCD-DL (blue) and
TCD-DL supported by STRING (green).

Table 10: Benchmarking results. Targeted cause discovery performance on E. coli GRN with 1565 genes
over varying levels of simulator’s observational fidelity. All measurements are expressed as percentages (%).

Fidelity high Fidelity medium Fidelity low
Method AUROC AP F1 AUROC AP F1 AUROC AP F1
Random 50.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 50.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 50.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0
Correlation 51.1 ± 8.0 0.7 ± 0.2 0.8 ± 0.1 51.0 ± 7.6 0.7 ± 0.2 0.8 ± 0.1 49.8 ± 3.3 0.7 ± 0.1 0.8 ± 0.1
Sortnregress 49.8 ± 0.7 1.4 ± 0.3 1.3 ± 0.4 49.9 ± 0.6 1.4 ± 0.4 1.2 ± 0.4 50.1 ± 0.1 0.7 ± 0.1 0.7 ± 0.2
PMF-GRN 52.6 ± 2.3 0.9 ± 0.1 0.8 ± 0.4 52.9 ± 3.2 1.0 ± 0.2 1.0 ± 0.3 51.5 ± 2.1 1.0 ± 0.1 1.1 ± 0.3
GENIE3 56.0 ± 3.4 2.9 ± 0.8 2.1 ± 0.7 54.3 ± 3.9 2.2 ± 1.1 1.5 ± 0.9 52.2 ± 3.7 1.1 ± 0.2 0.6 ± 0.2
DCD-FG 50.0 ± 0.0 0.6 ± 0.0 1.0 ± 0.0 50.0 ± 0.0 0.6 ± 0.0 1.0 ± 0.0 50.0 ± 0.0 0.5 ± 0.1 1.0 ± 0.0
AVICI 56.5 ± 4.2 1.0 ± 0.2 0.4 ± 0.3 62.7 ± 5.5 3.1 ± 1.7 3.7 ± 2.6 56.5 ± 8.4 1.2 ± 0.9 1.3 ± 1.1

TCD-DL (ours) 94.6 ± 1.8 38.6 ± 6.3 36.3 ± 6.1 81.7 ± 11.3 14.0 ± 11.7 13.4 ± 12.0 71.5 ± 3.7 2.4 ± 1.5 2.0 ± 1.8
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